92 research outputs found

    A short pollen diagram from Crown Lagoon in the Midlands of Tasmania

    Get PDF
    Pollen analysis of a 2 m core from the floor of Crown Lagoon in the Midlands of Tasmania indicates that the vegetation varied from grassy woodland through grassland to grassy woodland and grassy open-forest during late Pleistocene and Holocene times. It is suggested that these variations represent changes of climate from moister to colder and drier conditions. during the later part of the Last Glacial Stage (25 000-10 000 BP) with a return to moister conditions in the Holocene. The core is undated

    Coastal Upwelling Supplies Oxygen-Depleted Water to the Columbia River Estuary

    Get PDF
    Low dissolved oxygen (DO) is a common feature of many estuarine and shallow-water environments, and is often attributed to anthropogenic nutrient enrichment from terrestrial-fluvial pathways. However, recent events in the U.S. Pacific Northwest have highlighted that wind-forced upwelling can cause naturally occurring low DO water to move onto the continental shelf, leading to mortalities of benthic fish and invertebrates. Coastal estuaries in the Pacific Northwest are strongly linked to ocean forcings, and here we report observations on the spatial and temporal patterns of oxygen concentration in the Columbia River estuary. Hydrographic measurements were made from transect (spatial survey) or anchor station (temporal survey) deployments over a variety of wind stresses and tidal states during the upwelling seasons of 2006 through 2008. During this period, biologically stressful levels of dissolved oxygen were observed to enter the Columbia River estuary from oceanic sources, with minimum values close to the hypoxic threshold of 2.0 mg L−1. Riverine water was consistently normoxic. Upwelling wind stress controlled the timing and magnitude of low DO events, while tidal-modulated estuarine circulation patterns influenced the spatial extent and duration of exposure to low DO water. Strong upwelling during neap tides produced the largest impact on the estuary. The observed oxygen concentrations likely had deleterious behavioral and physiological consequences for migrating juvenile salmon and benthic crabs. Based on a wind-forced supply mechanism, low DO events are probably common to the Columbia River and other regional estuaries and if conditions on the shelf deteriorate further, as observations and models predict, Pacific Northwest estuarine habitats could experience a decrease in environmental quality

    Characterising solute transport in undisturbed soil cores using electrical and x-ray tomographic methods.

    No full text
    Solute transport in undisturbed soil is a complex process and detailed information on the transport characteristics is needed to provide fundamental understanding of the processes involved. X-ray computer tomography (CT) and electrical resistivity tomography (ERT) have been used to gain information on the transport characteristics. Both methods are non-intrusive and do not disturb the soil, in contrast to other methods. CT provides high resolution information on bulk density and macropores, while ERT provides a three-dimensional image of the internal resistivity structure. By adding a suitable solute under steady-state flow, the internal resistivity changes can be interpreted as a change in resident concentrations. In our experiment two cores from different field sites were investigated. The ERT measurements revealed two transport modes (one fast and one slow) in one of the cores and only one mode in the other. This was consistent with the results of transfer function modelling on the independently measured breakthrough curves (BTCs). The fast transport mode is perhaps a result of many connected macropores, detected by CT, but this could not be verified with the ERT measurements because of the coarser resolution. However, with ERT in both cases we were able to explain the observed BTC qualitatively
    corecore