26 research outputs found

    Unlocking the bottleneck in forward genetics using whole-genome sequencing and identity by descent to isolate causative mutations

    No full text
    Forward genetics screens with N-ethyl-N-nitrosourea (ENU) provide a powerful way to illuminate gene function and generate mouse models of human disease; however, the identification of causative mutations remains a limiting step. Current strategies depend on conventional mapping, so the propagation of affected mice requires non-lethal screens; accurate tracking of phenotypes through pedigrees is complex and uncertain; out-crossing can introduce unexpected modifiers; and Sanger sequencing of candidate genes is inefficient. Here we show how these problems can be efficiently overcome using whole-genome sequencing (WGS) to detect the ENU mutations and then identify regions that are identical by descent (IBD) in multiple affected mice. In this strategy, we use a modification of the Lander-Green algorithm to isolate causative recessive and dominant mutations, even at low coverage, on a pure strain background. Analysis of the IBD regions also allows us to calculate the ENU mutation rate (1.54 mutations per Mb) and to model future strategies for genetic screens in mice. The introduction of this approach will accelerate the discovery of causal variants, permit broader and more informative lethal screens to be used, reduce animal costs, and herald a new era for ENU mutagenesis.The High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics is funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant G0900747 91070. This study was supported by Wellcome Trust Strategic Award 082030 (CCG), Wellcome Trust Studentship 094446/Z/10/Z (KRB), the Oxford NIHR Biomedical Research Centre, and the MRC Human Immunology Unit (RJC). AJR and GL were supported by Wellcome Trust grant 090532/Z/ 09/Z, CCG and AE by a Major initiative Award from the Clive and Vera Ramaciotti Foundation, and AE by an NHMRC Career Development Award. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression

    Get PDF
    Glaucoma, a disease characterized by progressive optic nerve degeneration, can be prevented through timely diagnosis and treatment. We characterize optic nerve photographs of 67,040 UK Biobank participants and use a multitrait genetic model to identify risk loci for glaucoma. A glaucoma polygenic risk score (PRS) enables effective risk stratification in unselected glaucoma cases and modifies penetrance of the MYOC variant encoding p.Gln368Ter, the most common glaucoma-associated myocilin variant. In the unselected glaucoma population, individuals in the top PRS decile reach an absolute risk for glaucoma 10 years earlier than the bottom decile and are at 15-fold increased risk of developing advanced glaucoma (top 10% versus remaining 90%, odds ratio = 4.20). The PRS predicts glaucoma progression in prospectively monitored, early manifest glaucoma cases (P = 0.004) and surgical intervention in advanced disease (P = 3.6 × 10). This glaucoma PRS will facilitate the development of a personalized approach for earlier treatment of high-risk individuals, with less intensive monitoring and treatment being possible for lower-risk groups

    The effects of problem-oriented policing on crime and disorder

    Get PDF
    Problem-oriented Policing (POP) was first introduced by Herman Goldstein in 1979. The approach was one of a series of responses to a crisis in effectiveness and legitimacy in policing that emerged in the 1970s and 1980s. Goldstein argued that police were not being effective in preventing and controlling crime because they had become too focused on the “means” of policing and had neglected the “goals” of preventing and controlling crime and other community problems. Goldstein argued that the unit of analysis in policing must become the “problem” rather than calls or crime incidents as was the case during that period. POP has had tremendous impact on American policing, and is now one of the most widely implemented policing strategies in the US. To synthesize the extant problem-oriented policing evaluation literature and assess the effects of problem-oriented policing on crime and disorder Eligible studies had to meet three criteria: (1) the SARA model was used for a problemoriented policing intervention; (2) a comparison group was included; (3) at least one crime or disorder outcome was reported with sufficient data to generate an effect size. The unit of analysis could be people or places. Several strategies were used to perform an exhaustive search for literature fitting the eligibility criteria. First, a keyword search was performed on an array of online abstract databases. Second, we reviewed the bibliographies of past reviews of problem-oriented policing. Third, we performed forward searches for works that have cited seminal problem-oriented policing studies. Fourth, we performed hand searches of leading journals in the field. Fifth, we searched the publications of several research and professional agencies. Sixth, after finishing the above searches we e-mailed the list of studies meeting our eligibility criteria to leading policing scholars knowledgeable in the area of problem-oriented policing to ensure we had not missed any relevant studies. For our ten eligible studies, we provide both a narrative review of effectiveness and a meta-analysis. For the meta-analysis, we coded all primary outcomes of the eligible studies and we report the mean effect size (for studies with more than one primary outcome, we averaged effects to create a mean), the largest effect, and the smallest effect. Because of the heterogeneity of our studies, we used a random effects model. Based on our meta-analysis, overall problem-oriented policing has a modest but statistically significant impact on reducing crime and disorder. Our results are consistent when examining both experimental and quasi-experimental studies. Conclusions: We conclude that problem-oriented policing is effective in reducing crime and disorder, although the effect is fairly modest. We urge caution in interpreting these results because of the small number of methodologically rigorous studies on POP and the diversity of problems and responses used in our eligible studies

    Forward genetic analysis of mammalian immunity

    No full text
    Mutation, whether spontaneous or induced, is the premier tool for understanding gene function. One approach is to create mutations in a specific gene, and then use the resulting cell or organism to search for a phenotype. An alternative is to create mutations at random, and focus first on the identification of phenotypes. The mutation that underlies a phenotype can then be tracked down, forming the foundation of testable hypotheses. Using random chemical mutagenesis in mice, I have identified 20 heritable phenotypes affecting either the innate or adaptive branches of immunity. The genetic basis of 18 of these phenotypes was solved, caused by mutations in at least 16 unique genes. Five of these genes were not previously known to be involved in immunity, and a detailed analysis of four of them is provided in this thesis. These include genes encoding the following proteins: the inactive rhomboid protease iRhom2, which is specifically required for the secretion of tumour necrosis factor alpha; the hypothetical phospholipid flippase ATP11C, required for B cell development in the adult bone marrow; the folliculin-interacting protein FNIP1, also required for B cell development; and the zinc finger transcription factor ZBTB1, essential for the development of all lymphocyte lineages. These findings uncover new entry points for the understanding of mammalian immunity, and highlight the value of mouse forward genetics in the understanding of mammalian phenomena in general.This thesis is not currently available in ORA

    Mutation of the ER retention receptor KDELR1 leads to cell-intrinsic lymphopenia and a failure to control chronic viral infection

    No full text
    Endoplasmic reticulum (ER)-resident proteins are continually retrieved from the Golgi and returned to the ER by Lys-Asp-Glu-Leu (KDEL) receptors, which bind to an eponymous tetrapeptide motif at their substrate's C terminus. Mice and humans possess three paralogous KDEL receptors, but little is known about their functional redundancy, or if their mutation can be physiologically tolerated. Here, we present a recessive mouse missense allele of the prototypical mammalian KDEL receptor, KDEL ER protein retention receptor 1 (KDELR1). Kdelr1 homozygous mutants were mildly lymphopenic, as were mice with a CRISPR/Cas9-engineered frameshift allele. Lymphopenia was cell intrinsic and, in the case of T cells, was associated with reduced expression of the T-cell receptor (TCR) and increased expression of CD44, and could be partially corrected by an MHC class I-restricted TCR transgene. Antiviral immunity was also compromised, with Kdelr1 mutant mice unable to clear an otherwise self-limiting viral infection. These data reveal a nonredundant cellular function for KDELR1, upon which lymphocytes distinctly depend

    Glaucoma spectrum and age-related prevalence of individuals with FOXC1 and PITX2 variants

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. CORRECTION: Please note a corrigendum has been published by teh authors on 12 Oct 2017, and appears below.Variation in FOXC1 and PITX2 is associated with Axenfeld-Rieger syndrome, characterised by structural defects of the anterior chamber of the eye and a range of systemic features. Approximately half of all affected individuals will develop glaucoma, but the age at diagnosis and the phenotypic spectrum have not been well defined. As phenotypic heterogeneity is common, we aimed to delineate the age-related penetrance and the full phenotypic spectrum of glaucoma in FOXC1 or PITX2 carriers recruited through a national disease registry. All coding exons of FOXC1 and PITX2 were directly sequenced and multiplex ligation-dependent probe amplification was performed to detect copy number variation. The cohort included 53 individuals from 24 families with disease-associated FOXC1 or PITX2 variants, including one individual diagnosed with primary congenital glaucoma and five with primary open-angle glaucoma. The overall prevalence of glaucoma was 58.5% and was similar for both genes (53.3% for FOXC1 vs 60.9% for PITX2, P=0.59), however, the median age at glaucoma diagnosis was significantly lower in FOXC1 (6.0±13.0 years) compared with PITX2 carriers (18.0±10.6 years, P=0.04). The penetrance at 10 years old was significantly lower in PITX2 than FOXC1 carriers (13.0% vs 42.9%, P=0.03) but became comparable at 25 years old (71.4% vs 57.7%, P=0.38). These findings have important implications for the genetic counselling of families affected by Axenfeld-Rieger syndrome, and also suggest that FOXC1 and PITX2 contribute to the genetic architecture of primary glaucoma subtypes
    corecore