51 research outputs found

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    Disentangling molecular and clinical stratification patterns in beta-galactosidase deficiency

    Get PDF
    INTRODUCTION: This study aims to define the phenotypic and molecular spectrum of the two clinical forms of β-galactosidase (β-GAL) deficiency, GM1-gangliosidosis and mucopolysaccharidosis IVB (Morquio disease type B, MPSIVB). METHODS: Clinical and genetic data of 52 probands, 47 patients with GM1-gangliosidosis and 5 patients with MPSIVB were analysed. RESULTS: The clinical presentations in patients with GM1-gangliosidosis are consistent with a phenotypic continuum ranging from a severe antenatal form with hydrops fetalis to an adult form with an extrapyramidal syndrome. Molecular studies evidenced 47 variants located throughout the sequence of the GLB1 gene, in all exons except 7, 11 and 12. Eighteen novel variants (15 substitutions and 3 deletions) were identified. Several variants were linked specifically to early-onset GM1-gangliosidosis, late-onset GM1-gangliosidosis or MPSIVB phenotypes. This integrative molecular and clinical stratification suggests a variant-driven patient assignment to a given clinical and severity group. CONCLUSION: This study reports one of the largest series of b-GAL deficiency with an integrative patient stratification combining molecular and clinical features. This work contributes to expand the community knowledge regarding the molecular and clinical landscapes of b-GAL deficiency for a better patient management

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD

    [How to deal with a fetal head circumference lower than the third percentile?]

    No full text
    International audienceThe prenatal finding of a head circumference (HC) below the 3rd percentile (p) remains, in the same way as short femur or increased nuchal translucency with normal karyotype, one the most difficult situations for the praticionner in the setting of prenatal diagnosis. Microcephaly is a gateway to possible cerebral pathologies, but the main objective is to identify serious prenatal situations. A standardized HC measurement, the use of adapted reference tools and charts, longitudinal following of cephalic biometrics in high-risk situations, and systematic central nervous system analysis can increase the diagnostic performance of ultrasound which is often disappointing for microcephaly. The early distinction between associated or isolated microcephaly makes it possible to quickly orient the prenatal management and counseling. Fetal MRI and genetic counseling are fundamental in this context, making it possible to specify at best the etiological diagnosis and to provide assistance to the neuropediatrician in the establishment of an often uncertain prognosis. The recent increase in cases of microcephaly concomitant with the epidemic of the ZIKA virus is an additional argument to improve our practices and the daily apprehension of HC\textless3rd p
    • …
    corecore