103 research outputs found

    Comparative genome sequencing and analyses of Mycobacterium cosmeticum reveal potential for biodesulfization of gasoline

    Get PDF
    <div><p><i>Mycobacterium cosmeticum</i> is a nontuberculous <i>Mycobacterium</i> recovered from different water sources including household potable water and water collected at nail salon. Individual cases of this bacterium have been reported to be associated with gastrointestinal tract infections. Here we present the first whole-genome study and comparative analysis of two new clinically-derived <i>Mycobacterium</i> sp. UM_RHS (referred as UM_RHS after this) and <i>Mycobacterium</i> sp. UM_NYF (referred as UM_NYF after this) isolated from patients in Indonesia and Malaysia respectively to have a better understanding of the biological characteristic of these isolates. Both strains are likely <i>Mycobacterium cosmeticum</i> as supported by the evidence from molecular phylogenetic, comparative genomic and Average Nucleotide Identity (ANI) analyses. We found the presence of a considerably large number of putative virulence genes in the genomes of UM_RHS and UM_NYF. Interestingly, we also found a horizontally transferred genomic island carrying a putative <i>dsz</i> operon proposing that they may have potential to perform biodesulfization of dibenzothiophene (DBT) that may be effective in cost reduction and air pollution during fuel combustion. This comparative study may provide new insights into <i>M</i>. <i>cosmeticum</i> and serve as an important reference for future functional studies of this bacterial species.</p></div

    Characterisation of Drosophila Ubx CPTI000601 and hth CPTI000378 protein trap lines.

    Get PDF
    In Drosophila, protein trap strategies provide powerful approaches for the generation of tagged proteins expressed under endogenous control. Here, we describe expression and functional analysis to evaluate new Ubx and hth protein trap lines generated by the Cambridge Protein Trap project. Both protein traps exhibit spatial and temporal expression patterns consistent with the reported endogenous pattern in the embryo. In imaginal discs, Ubx-YFP is expressed throughout the haltere and 3rd leg imaginal discs, while Hth-YFP is expressed in the proximal regions of haltere and wing discs but not in the pouch region. The UbxCPTI000601 line is semilethal as a homozygote. No T3/A1 to T2 transformations were observed in the embryonic cuticle or the developing midgut. The homozygous survivors, however, exhibit a weak haltere phenotype with a few wing-like marginal bristles on the haltere capitellum. Although hthCPTI000378 is completely lethal as a homozygote, the hthCPTI000378/hthC1 genotype is viable. Using a hth deletion (Df(3R)BSC479) we show that hthCPTI000378/Df(3R)BSC479 adults are phenotypically normal. No transformations were observed in hthCPTI000378, hthCPTI000378/hthC1, or hthCPTI000378/Df(3R)BSC479 embryonic cuticles. We have successfully characterised the Ubx-YFP and Hth-YFP protein trap lines demonstrating that the tagged proteins show appropriate expression patterns and produce at least partially functional proteins

    Genome-wide analysis of the binding of the Hox protein Ultrabithorax and the Hox cofactor Homothorax in Drosophila.

    Get PDF
    Hox genes encode a family of transcription factors that are key developmental regulators with a highly conserved role in specifying segmental diversity along the metazoan body axis. Although they have been shown to regulate a wide variety of downstream processes, direct transcriptional targets have been difficult to identify and this has been a major obstacle to our understanding of Hox gene function. We report the identification of genome-wide binding sites for the Hox protein Ultrabithorax (Ubx) using a YFP-tagged Drosophila protein-trap line together with chromatin immunoprecipitation and microarray analysis. We identify 1,147 genes bound by Ubx at high confidence in chromatin from the haltere imaginal disc, a prominent site of Ubx function where it specifies haltere versus wing development. The functional relevance of these genes is supported by their overlap with genes differentially expressed between wing and haltere imaginal discs. The Ubx-bound gene set is highly enriched in genes involved in developmental processes and contains both high-level regulators as well as genes involved in more basic cellular functions. Several signalling pathways are highly enriched in the Ubx target gene set and our analysis supports the view that Hox genes regulate many levels of developmental pathways and have targets distributed throughout the gene network. We also performed genome-wide analysis of the binding sites for the Hox cofactor Homothorax (Hth), revealing a striking similarity with the Ubx binding profile. We suggest that these binding profiles may be strongly influenced by chromatin accessibility and provide evidence of a link between Ubx/Hth binding and chromatin state at genes regulated by Polycomb silencing. Overall, we define a set of direct Ubx targets in the haltere imaginal disc and suggest that chromatin accessibility has important implications for Hox target selection and for transcription factor binding in general

    Roles of cofactors and chromatin accessibility in Hox protein target specificity.

    Get PDF
    BACKGROUND: The regulation of specific target genes by transcription factors is central to our understanding of gene network control in developmental and physiological processes yet how target specificity is achieved is still poorly understood. This is well illustrated by the Hox family of transcription factors as their limited in vitro DNA-binding specificity contrasts with their clear in vivo functional specificity. RESULTS: We generated genome-wide binding profiles for three Hox proteins, Ubx, Abd-A and Abd-B, following transient expression in Drosophila Kc167 cells, revealing clear target specificity and a striking influence of chromatin accessibility. In the absence of the TALE class homeodomain cofactors Exd and Hth, Ubx and Abd-A bind at a very similar set of target sites in accessible chromatin, whereas Abd-B binds at an additional specific set of targets. Provision of Hox cofactors Exd and Hth considerably modifies the Ubx genome-wide binding profile enabling Ubx to bind at an additional novel set of targets. Both the Abd-B specific targets and the cofactor-dependent Ubx targets are in chromatin that is relatively DNase1 inaccessible prior to the expression of Hox proteins/Hox cofactors. CONCLUSIONS: Our experiments demonstrate a strong role for chromatin accessibility in Hox protein binding and suggest that Hox protein competition with nucleosomes has a major role in Hox protein target specificity in vivo.This work was supported by University of Malaya High Impact Research Grant UM-HIR UM.C/625/HIR/MOHE/CHAN-08 from the Ministry of Higher Education Malaysia.This is the final version of the article. It was first available from BioMed Central via http://dx.doi.org/10.1186/s13072-015-0049-

    Comparative genome analysis of Fusobacterium nucleatum

    Get PDF
    Fusobacterium nucleatum is considered to be a key oral bacterium in recruiting periodontal pathogens into subgingival dental plaque. Currently F. Nucleatum can be subdivided into five subspecies. Our previous genome analysis of F. Nucleatum W1481 (referred to hereafter asW1481), isolated from an 8-mmperiodontal pocket in a patient with chronic periodontitis, suggested the possibility of a new subspecies. To further investigate the biology and relationships of this possible subspecies with other known subspecies, we performed comparative analysis between W1481 and 35 genome sequences represented by the five known Fusobacterium subspecies.Our analyses suggest thatW1481ismost likely anew F. Nucleatum subspecies, supported by evidence fromphylogenetic analysesandmaximaluniquematchindices(MUMi). Interestingly,wefoundahorizontally transferredW1481-specificgenomicisland harboring the tripartite ATP-independent (TRAP)-like transporter genes, suggesting this bacterium might have a high-Affinity transport system for the C4-dicarboxylates malate, succinate, and fumarate.Moreover, we found virulence genes in theW1481 genome that may provide a strong defense mechanism which might enable it to colonize and survive within the host by evading immune surveillance. This comparative study provides better understanding of F. Nucleatum and the basis for future functional work on this important pathogen

    Development of ListeriaBase and comparative analysis of Listeria monocytogenes

    Get PDF
    Background: Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give better insights into evolution, genetics and phylogeny of Listeria spp., leading to better management of the diseases caused by them. Description: With this motivation, we have developed ListeriaBase, a web Listeria genomic resource and analysis platform to facilitate comparative analysis of Listeria spp. ListeriaBase currently houses 850,402 protein-coding genes, 18,113 RNAs and 15,576 tRNAs from 285 genome sequences of different Listeria strains. An AJAX-based real time search system implemented in ListeriaBase facilitates searching of this huge genomic data. Our in-house designed comparative analysis tools such as Pairwise Genome Comparison (PGC) tool allowing comparison between two genomes, Pathogenomics Profiling Tool (PathoProT) for comparing the virulence genes, and ListeriaTree for phylogenic classification, were customized and incorporated in ListeriaBase facilitating comparative genomic analysis of Listeria spp. Interestingly, we identified a unique genomic feature in the L. monocytogenes genomes in our analysis. The Auto protein sequences of the serotype 4 and the non-serotype 4 strains of L. monocytogenes possessed unique sequence signatures that can differentiate the two groups. We propose that the aut gene may be a potential gene marker for differentiating the serotype 4 strains from other serotypes of L. monocytogenes. Conclusions: ListeriaBase is a useful resource and analysis platform that can facilitate comparative analysis of Listeria for the scientific communities. We have successfully demonstrated some key utilities of ListeriaBase. The knowledge that we obtained in the analyses of L. monocytogenes may be important for functional works of this human pathogen in future. ListeriaBase is currently available at http://listeria.um.edu.my

    Development of ListeriaBase and comparative analysis of \u3ci\u3eListeria monocytogenes\u3c/i\u3e

    Get PDF
    Background: Listeria consists of both pathogenic and non-pathogenic species. Reports of similarities between the genomic content between some pathogenic and non-pathogenic species necessitates the investigation of these species at the genomic level to understand the evolution of virulence-associated genes. With Listeria genome data growing exponentially, comparative genomic analysis may give better insights into evolution, genetics and phylogeny of Listeria spp., leading to better management of the diseases caused by them. Description: With this motivation, we have developed ListeriaBase, a web Listeria genomic resource and analysis platform to facilitate comparative analysis of Listeria spp. ListeriaBase currently houses 850,402 protein-coding genes, 18,113 RNAs and 15,576 tRNAs from 285 genome sequences of different Listeria strains. An AJAX-based real time search system implemented in ListeriaBase facilitates searching of this huge genomic data. Our in-house designed comparative analysis tools such as Pairwise Genome Comparison (PGC) tool allowing comparison between two genomes, Pathogenomics Profiling Tool (PathoProT) for comparing the virulence genes, and ListeriaTree for phylogenic classification, were customized and incorporated in ListeriaBase facilitating comparative genomic analysis of Listeria spp. Interestingly, we identified a unique genomic feature in the L. monocytogenes genomes in our analysis. The Auto protein sequences of the serotype 4 and the non-serotype 4 strains of L. monocytogenes possessed unique sequence signatures that can differentiate the two groups. We propose that the aut gene may be a potential gene marker for differentiating the serotype 4 strains from other serotypes of L. monocytogenes. Conclusions: ListeriaBase is a useful resource and analysis platform that can facilitate comparative analysis of Listeria for the scientific communities. We have successfully demonstrated some key utilities of ListeriaBase. The knowledge that we obtained in the analyses of L. monocytogenes may be important for functional works of this human pathogen in future. ListeriaBase is currently available at http://listeria.um.edu.my

    Are Pangolins Scapegoats of the COVID-19 Outbreak-CoV Transmission and Pathology Evidence?

    Get PDF
    The COVID‐19 outbreak has infected over 6 million people across the world. The origin of COVID‐19 coronavirus (CoV) remains unknown, although pangolins have been suggested as potential hosts. We investigated two pangolins seized in Guangdong Province, China. Molecular screening revealed CoV in one pangolin (“Dahu”), while another (“Meidong”) was infected by Ehrlichia ruminantium. Dahu exhibited difficulty breathing, infections of lung, intestines, and nostrils, as revealed by computed tomography imaging and necropsy. Previous phylogenetic analyses showed bat coronavirus RaTG13 is closer to COVID‐19 CoV compared to pangolin coronavirus. Over 20 caregivers have had close physical contact with CoV‐positive Dahu, but none became infected with CoV. Our data suggest that pangolins are unlikely the natural reservoir or secondary hosts of COVID‐19 CoV. Pangolins seems to be victims infected by CoV carried by a not yet unidentified natural reservoir host species, perhaps due to their weakened immune system

    De novo sequencing, assembly and analysis of eight different transcriptomes from the Malayan pangolin

    Get PDF
    Pangolins are scale-covered mammals, containing eight endangered species. Maintaining pangolins in captivity is a significant challenge, in part because little is known about their genetics. Here we provide the first large-scale sequencing of the critically endangered Manis javanica transcriptomes from eight different organs using Illumina HiSeq technology, yielding ~75 Giga bases and 89,754 unigenes. We found some unigenes involved in the insect hormone biosynthesis pathway and also 747 lipids metabolism-related unigenes that may be insightful to understand the lipid metabolism system in pangolins. Comparative analysis between M. javanica and other mammals revealed many pangolin-specific genes significantly over-represented in stress-related processes, cell proliferation and external stimulus, probably reflecting the traits and adaptations of the analyzed pregnant female M. javanica. Our study provides an invaluable resource for future functional works that may be highly relevant for the conservation of pangolins
    corecore