11 research outputs found

    Disk masses in the Orion Molecular Cloud-2: distinguishing time and environment

    Full text link
    The mass evolution of protoplanetary disks is driven by both internal processes and external factors, such as photoevaporation. Disentangling these two effects, however, has remained difficult. We measure the dust masses of a sample of 132 disks in the Orion Molecular Cloud (OMC)-2 region, and compare them to (i) externally photoevaporated disks in the Trapezium cluster, and (ii) disks in nearby low-mass star forming regions (SFRs). This allows us to test if initial disk properties are the same in high- and low-mass SFRs, and enables a direct measurement of the effect of external photoevaporation on disks. A ~ 20×420' \times 4' mosaic of 3 mm continuum observations from the Atacama Large Millimeter/submillimeter Array (ALMA) was used to measure the fluxes of 132 disks and 35 protostars >0.5 pc away from the Trapezium. We identify and characterize a sample of 34 point sources not included in the Spitzer catalog on which the sample is based. Of the disks, 37 (28%) are detected, with masses ranging from 7-270 M_e. The detection rate for protostars is higher at 69%. Disks near the Trapezium are found to be less massive by a factor 0.180.11+0.180.18^{+0.18}_{-0.11}, implying a mass loss rate of 8×1088\times10^{-8} M_sun/yr. Our observations allow us to distinguish the impact of time and environment on disk evolution in a single SFR. The disk mass distribution in OMC-2 is statistically indistinguishable from that in nearby low-mass SFRs, like Lupus and Taurus. We conclude that age is the main factor determining the evolution of these disks. This result is robust with respect to assumptions of dust temperature, sample incompleteness and biases. The difference between the OMC-2 and Trapezium cluster samples is consistent with mass loss driven by far-ultraviolet radiation near the Trapezium. Together, this implies that in isolation, disk formation and evolution proceed similarly, regardless of cloud mass.Comment: Accepted for publication in A&A. 16 pages, 6 figure

    X-ray, Near-Ultraviolet, and Optical Flares Produced By Colliding Magnetospheres in The Young High-Eccentricity Binary DQ Tau

    Full text link
    DQ Tau is a unique young high-eccentricity binary system that exhibits regular magnetic reconnection flares and pulsed accretion near periastron. We conducted NuSTAR, Swift, and Chandra observations during the July 30, 2022 periastron to characterize X-ray, near-ultraviolet (NUV), and optical flaring emissions. Our findings confirm the presence of X-ray super-flares accompanied by substantial NUV and optical flares, consistent with previous discoveries of periastron flares in 2010 and 2021. These observations, supported by new evidence, strongly establish the magnetosphere collision mechanism as the primary driver of magnetic energy release during DQ Tau's periastron flares. The energetics of the observed X-ray super-flares remain consistent across the three periastrons, indicating recurring energy sources during each passage, surpassing the capabilities of single stars. The observed flaring across multiple bands supports the Adams et al. model for magnetosphere interaction in eccentric binaries. Evidence from modeling and past and current observations suggests that both the mm/X-ray periastron flares and tentatively, the magnetic reconnection-related components of the optical/NUV emissions, conform to the classical solar/stellar non-thermal thick-target model, except for the distinctive magnetic energy source. However, our NuSTAR observations suffered from high background levels, hindering the detection of anticipated non-thermal hard X-rays. Furthermore, we report serendipitous discovery of X-ray super-flares occurring away from periastron, potentially associated with interacting magnetospheres. The current study is part of a broader multi-wavelength campaign, which is planned to investigate the influence of DQ Tau's stellar radiation on gas-phase ion chemistry within its circumbinary disk.Comment: 27 pages, 9 figures, 3 tables. Accepted for publication in The Astrophysical Journal, October 18, 202

    Dust masses of young disks: constraining the initial solid reservoir for planet formation

    Get PDF
    In recent years evidence has been building that planet formation starts early, in the first \sim 0.5 Myr. Studying the dust masses available in young disks enables understanding the origin of planetary systems since mature disks are lacking the solid material necessary to reproduce the observed exoplanetary systems, especially the massive ones. We aim to determine if disks in the embedded stage of star formation contain enough dust to explain the solid content of the most massive exoplanets. We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 6 observations of embedded disks in the Perseus star-forming region together with Very Large Array (VLA) Ka-band (9 mm) data to provide a robust estimate of dust disk masses from the flux densities. Using the DIANA opacity model including large grains, with a dust opacity value of κ9 mm\kappa_{\rm 9\ mm} = 0.28 cm2^{2} g1^{-1}, the median dust masses of the embedded disks in Perseus are 158 M_\oplus for Class 0 and 52 M_\oplus for Class I from the VLA fluxes. The lower limits on the median masses from ALMA fluxes are 47 M_\oplus and 12 M_\oplus for Class 0 and Class I, respectively, obtained using the maximum dust opacity value κ1.3mm\kappa_{\rm 1.3mm} = 2.3 cm2^{2} g1^{-1}. The dust masses of young Class 0 and I disks are larger by at least a factor of 10 and 3, respectively, compared with dust masses inferred for Class II disks in Lupus and other regions. The dust masses of Class 0 and I disks in Perseus derived from the VLA data are high enough to produce the observed exoplanet systems with efficiencies acceptable by planet formation models: the solid content in observed giant exoplanets can be explained if planet formation starts in Class 0 phase with an efficiency of \sim 15%. Higher efficiency of \sim 30% is necessary if the planet formation is set to start in Class I disks.Comment: 16 pages, 10 figures, accepted for publication in A&

    XUE. Molecular inventory in the inner region of an extremely irradiated Protoplanetary Disk

    Full text link
    We present the first results of the eXtreme UV Environments (XUE) James Webb Space Telescope (JWST) program, that focuses on the characterization of planet forming disks in massive star forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is critical in order to gain insights into the diversity of the observed exoplanet populations. XUE targets 15 disks in three areas of NGC 6357, which hosts numerous massive OB stars, among which some of the most massive stars in our Galaxy. Thanks to JWST we can, for the first time, study the effect of external irradiation on the inner (<10< 10 au), terrestrial-planet forming regions of proto-planetary disks. In this study, we report on the detection of abundant water, CO, CO2_2, HCN and C2_2H2_2 in the inner few au of XUE 1, a highly irradiated disk in NGC 6357. In addition, small, partially crystalline silicate dust is present at the disk surface. The derived column densities, the oxygen-dominated gas-phase chemistry, and the presence of silicate dust are surprisingly similar to those found in inner disks located in nearby, relatively isolated low-mass star-forming regions. Our findings imply that the inner regions of highly irradiated disks can retain similar physical and chemical conditions as disks in low-mass star-forming regions, thus broadening the range of environments with similar conditions for inner disk rocky planet formation to the most extreme star-forming regions in our Galaxy.Comment: Accepted for publication in ApJ Letters. 20 pages, 7 figure

    X-Ray, Near-ultraviolet, and Optical Flares Produced by Colliding Magnetospheres in the Young High-eccentricity Binary DQ Tau

    No full text
    DQ Tau is a unique young high-eccentricity binary system that exhibits regular magnetic reconnection flares and pulsed accretion near periastron. We conducted NuSTAR, Swift, and Chandra observations during the 2022 July 30 periastron to characterize X-ray, near-ultraviolet (NUV), and optical flaring emissions. Our findings confirm the presence of X-ray superflares accompanied by substantial NUV and optical flares, consistent with previous discoveries of periastron flares in 2010 and 2021. These observations, supported by new evidence, strongly establish the magnetosphere collision mechanism as the primary driver of magnetic energy release during DQ Tau’s periastron flares. The energetics of the observed X-ray superflares remain consistent across the three periastra, indicating recurring energy sources during each passage, surpassing the capabilities of single stars. The observed flaring across multiple bands supports the Adams et al. model for magnetosphere interaction in eccentric binaries. Evidence from modeling and past and current observations suggests that both the millimeter/X-ray periastron flares and, tentatively, the magnetic-reconnection-related components of the optical/NUV emissions conform to the classical solar/stellar nonthermal thick-target model, except for the distinctive magnetic energy source. However, our NuSTAR observations suffered from high background levels, hindering the detection of anticipated nonthermal hard X-rays. Furthermore, we report the serendipitous discovery of X-ray superflares occurring away from periastron, potentially associated with interacting magnetospheres. The current study is part of a broader multiwavelength campaign, which plans to investigate the influence of DQ Tau’s stellar radiation on gas-phase ion chemistry within its circumbinary disk

    XUE: Molecular Inventory in the Inner Region of an Extremely Irradiated Protoplanetary Disk

    Get PDF
    We present the first results of the eXtreme UV Environments (XUE) James Webb Space Telescope (JWST) program, which focuses on the characterization of planet-forming disks in massive star-forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is critical in order to gain insights into the diversity of the observed exoplanet populations. XUE targets 15 disks in three areas of NGC 6357, which hosts numerous massive OB stars, including some of the most massive stars in our Galaxy. Thanks to JWST, we can, for the first time, study the effect of external irradiation on the inner (<10 au), terrestrial-planet-forming regions of protoplanetary disks. In this study, we report on the detection of abundant water, CO, 12CO2, HCN, and C2H2 in the inner few au of XUE 1, a highly irradiated disk in NGC 6357. In addition, small, partially crystalline silicate dust is present at the disk surface. The derived column densities, the oxygen-dominated gas-phase chemistry, and the presence of silicate dust are surprisingly similar to those found in inner disks located in nearby, relatively isolated low-mass star-forming regions. Our findings imply that the inner regions of highly irradiated disks can retain similar physical and chemical conditions to disks in low-mass star-forming regions, thus broadening the range of environments with similar conditions for inner disk rocky planet formation to the most extreme star-forming regions in our Galaxy
    corecore