81 research outputs found

    Constraints on extragalactic transmitters via Breakthrough Listen

    Full text link
    The Breakthrough Listen Initiative has embarked on a comprehensive SETI survey of nearby stars in the Milky Way that is vastly superior to previous efforts as measured by a wide range of different metrics. SETI surveys traditionally ignore the fact that they are sensitive to many background objects, in addition to the foreground target star. In order to better appreciate and exploit the presence of extragalactic objects in the field of view, the Aladin sky atlas and NED were employed to make a rudimentary census of extragalactic objects that were serendipitously observed with the 100-m Greenbank telescope observing at 1.1-1.9 GHz. For 469 target fields (assuming a FWHM radial field-of-view of 4.2 arcminutes), NED identified a grand total of 143024 extragalactic objects, including various astrophysical exotica e.g. AGN of various types, radio galaxies, interacting galaxies, and one confirmed gravitational lens system. Several nearby galaxies, galaxy groups and galaxy clusters are identified, permitting the parameter space probed by SETI surveys to be significantly extended. Constraints are placed on the luminosity function of potential extraterrestrial transmitters assuming it follows a simple power law and limits on the prevalence of very powerful extraterrestrial transmitters associated with these vast stellar systems are also determined. It is demonstrated that the recent Breakthrough Listen Initiative, and indeed many previous SETI radio surveys, place stronger limits on the prevalence of extraterrestrial intelligence in the distant Universe than is often fully appreciated.Comment: 9 Pages, 5 figures, accepted by MNRA

    Extending the Breakthrough Listen nearby star survey to other stellar objects in the field

    Get PDF
    We extend the source sample recently observed by the Breakthrough Listen Initiative by including additional stars (with parallaxes measured by Gaia) that also reside within the FWHM of the GBT and Parkes radio telescope target fields. These stars have estimated distances as listed in the extensions of the Gaia DR2 catalogue. Enlarging the sample from 1327 to 288315 stellar objects permits us to achieve substantially better Continuous Waveform Transmitter Rate Figures of Merit (CWTFM) than any previous analysis, and allows us to place the tightest limits yet on the prevalence of nearby high-duty-cycle extraterrestrial transmitters. The results suggest 0.06600.0003+0.0004\lesssim 0.0660^{+0.0004}_{-0.0003}% of stellar systems within 50 pc host such transmitters (assuming an EIRP 1013 \gtrsim 10^{13} W) and 0.0390.008+0.004\lesssim 0.039^{+0.004}_{-0.008}% within 200 pc (assuming an EIRP 2.5×1014\gtrsim 2.5 \times 10^{14} W). We further extend our analysis to much greater distances, though we caution that the detection of narrow-band signals beyond a few hundred pc may be affected by interstellar scintillation. The extended sample also permits us to place new constraints on the prevalence of extraterrestrial transmitters by stellar type and spectral class. Our results suggest targeted analyses of SETI radio data can benefit from taking into account the fact that in addition to the target at the field centre, many other cosmic objects reside within the primary beam response of a parabolic radio telescope. These include foreground and background galactic stars, but also extragalactic systems. With distances measured by Gaia, these additional sources can be used to place improved limits on the prevalence of extraterrestrial transmitters, and extend the analysis to a wide range of cosmic objects.Comment: 10 pages, 5 figures, 3 tables. Accepted by MNRA

    Panoramic optical and near-infrared SETI instrument: prototype design and testing

    Get PDF
    The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial Intelligence (PANOSETI) is an instrument program that aims to search for fast transient signals (nano-second to seconds) of artificial or astrophysical origin. The PANOSETI instrument objective is to sample the entire observable sky during all observable time at optical and near-infrared wavelengths over 300 - 1650 nm1^1. The PANOSETI instrument is designed with a number of modular telescope units using Fresnel lenses (\sim0.5m) arranged on two geodesic domes in order to maximize sky coverage2^2. We present the prototype design and tests of these modular Fresnel telescope units. This consists of the design of mechanical components such as the lens mounting and module frame. One of the most important goals of the modules is to maintain the characteristics of the Fresnel lens under a variety of operating conditions. We discuss how we account for a range of operating temperatures, humidity, and module orientations in our design in order to minimize undesirable changes to our focal length or angular resolution.Comment: 12 pages, 8 figures, 1 tabl

    Current and Nascent SETI Instruments in the Radio and Optical

    Get PDF
    Here we describe our ongoing efforts to develop high-performance and sensitive instrumentation for use in the search for extra-terrestrial intelligence (SETI). These efforts include our recently deployed Search for Extraterrestrial Emissions from Nearby Developed Intelligent Populations Spectrometer (SERENDIP V.v) and two instruments currently under development; the Heterogeneous Radio SETI Spectrometer (HRSS) for SETI observations in the radio spectrum and the Optical SETI Fast Photometer (OSFP) for SETI observations in the optical band. We will discuss the basic SERENDIP V.v instrument design and initial analysis methodology, along with instrument architectures and observation strategies for OSFP and HRSS. In addition, we will demonstrate how these instruments may be built using low-cost, modular components and programmed and operated by students using common languages, e.g. ANSI C

    Setiburst: A Robotic, Commensal, Realtime Multi-Science Backend For The Arecibo Telescope

    Get PDF
    Radio astronomy has traditionally depended on observatories allocating time to observers for exclusive use of their telescopes. The disadvantage of this scheme is that the data thus collected is rarely used for other astronomy applications, and in many cases, is unsuitable. For example, properly calibrated pulsar search data can, with some reduction, be used for spectral line surveys. A backend that supports plugging in multiple applications to a telescope to perform commensal data analysis will vastly increase the science throughput of the facility. In this paper, we presen

    Detection of Bursts from FRB 121102 with the Effelsberg 100-m Radio Telescope at 5 GHz and the Role of Scintillation

    Get PDF
    FRB 121102, the only repeating fast radio burst (FRB) known to date, was discovered at 1.4 GHz and shortly after the discovery of its repeating nature, detected up to 2.4 GHz. Here we present three bursts detected with the 100-m Effelsberg radio telescope at 4.85 GHz. All three bursts exhibited frequency structure on broad and narrow frequency scales. Using an autocorrelation function analysis, we measured a characteristic bandwidth of the small-scale structure of 6.4±\pm1.6 MHz, which is consistent with the diffractive scintillation bandwidth for this line of sight through the Galactic interstellar medium (ISM) predicted by the NE2001 model. These were the only detections in a campaign totaling 22 hours in 10 observing epochs spanning five months. The observed burst detection rate within this observation was inconsistent with a Poisson process with a constant average occurrence rate; three bursts arrived in the final 0.3 hr of a 2 hr observation on 2016 August 20. We therefore observed a change in the rate of detectable bursts during this observation, and we argue that boosting by diffractive interstellar scintillations may have played a role in the detectability. Understanding whether changes in the detection rate of bursts from FRB 121102 observed at other radio frequencies and epochs are also a product of propagation effects, such as scintillation boosting by the Galactic ISM or plasma lensing in the host galaxy, or an intrinsic property of the burst emission will require further observations.Comment: Accepted to ApJ. Minor typos correcte

    The breakthrough listen search for intelligent life: a wideband data recorder system for the Robert C. Byrd green bank telescope

    Get PDF
    The Breakthrough Listen Initiative is undertaking a comprehensive search for radio and optical signatures from extraterrestrial civilizations. An integral component of the project is the design and implementation of wide-bandwidth data recorder and signal processing systems. The capabilities of these systems, particularly at radio frequencies, directly determine survey speed; further, given a fixed observing time and spectral coverage, they determine sensitivity as well. Here, we detail the Breakthrough Listen wide-bandwidth data recording system deployed at the 100-m aperture Robert C. Byrd Green Bank Telescope. The system digitizes up to 6 GHz of bandwidth at 8 bits for both polarizations, storing the resultant 24 GB/s of data to disk. This system is among the highest data rate baseband recording systems in use in radio astronomy. A future system expansion will double recording capacity, to achieve a total Nyquist bandwidth of 12 GHz in two polarizations. In this paper, we present details of the system architecture, along with salient configuration and disk-write optimizations used to achieve high-throughput data capture on commodity compute servers and consumer-class hard disk drives

    The breakthrough listen search for intelligent life: 1.1–1.9 GHz observations of 692 nearby stars

    Get PDF
    We report on a search for engineered signals from a sample of 692 nearby stars using the Robert C. Byrd Green Bank Telescope, undertaken as part of the Breakthrough Listen Initiative search for extraterrestrial intelligence. Observations were made over 1.1−1.9 GHz (L band), with three sets of five-minute observations of the 692 primary targets, interspersed with five-minute observations of secondary targets. By comparing the “ON” and “OFF” observations we are able to identify terrestrial interference and place limits on the presence of engineered signals from putative extraterrestrial civilizations inhabiting the environs of the target stars. During the analysis, eleven events passed our thresholding algorithm, but a detailed analysis of their properties indicates they are consistent with known examples of anthropogenic radio frequency interference. We conclude that, at the time of our observations, none of the observed systems host high-duty-cycle radio transmitters emitting between 1.1 and 1.9 GHz with an Equivalent Isotropic Radiated Power of ∼ 1013 W, which is readily achievable by our own civilization. Our results suggest that fewer than ∼ 0.1% of the stellar systems within 50 pc possess the type of transmitters searched in this survey

    An opportunistic Search for Extraterrestrial Intelligence (SETI) with the Murchison Widefield Array

    Get PDF
    © 2016. The American Astronomical Society. All rights reserved. A spectral line image cube generated from 115 minutes of MWA data that covers a field of view of 400 sq, deg. around the Galactic Center is used to perform the first Search for ExtraTerrestrial Intelligence (SETI) with the Murchison Widefield Array (MWA). Our work constitutes the first modern SETI experiment at low radio frequencies, here between 103 and 133 MHz, paving the way for large-scale searches with the MWA and, in the future, the low-frequency Square Kilometre Array. Limits of a few hundred mJy beam-1 for narrowband emission (10 kHz) are derived from our data, across our 400 sq. deg. field of view. Within this field, 45 exoplanets in 38 planetary systems are known. We extract spectra at the locations of these systems from our image cube to place limits on the presence of narrow line emission from these systems. We then derive minimum isotropic transmitter powers for these exoplanets; a small handful of the closest objects (10 s of pc) yield our best limits of order 1014 W (Equivalent Isotropic Radiated Power). These limits lie above the highest power directional transmitters near these frequencies currently operational on Earth. A SETI experiment with the MWA covering the full accessible sky and its full frequency range would require approximately one month of observing time. The MWA frequency range, its southern hemisphere location on an extraordinarily radio quiet site, its very large field of view, and its high sensitivity make it a unique facility for SETI
    corecore