415 research outputs found

    Kriging Models That Are Robust With Respect to Simulation Errors

    Get PDF
    In the field of the Design and Analysis of Computer Experiments (DACE) meta-models are used to approximate time-consuming simulations. These simulations often contain simulation-model errors in the output variables. In the construction of meta-models, these errors are often ignored. Simulation-model errors may be magnified by the meta-model. Therefore, in this paper, we study the construction of Kriging models that are robust with respect to simulation-model errors. We introduce a robustness criterion, to quantify the robustness of a Kriging model. Based on this robustness criterion, two new methods to find robust Kriging models are introduced. We illustrate these methods with the approximation of the Six-hump camel back function and a real life example. Furthermore, we validate the two methods by simulating artificial perturbations. Finally, we consider the influence of the Design of Computer Experiments (DoCE) on the robustness of Kriging models.Kriging;robustness;simulation-model error

    A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations

    Get PDF
    In this paper, piecewise linear upper and lower bounds for univariate convex functions are derived that are only based on function value information. These upper and lower bounds can be used to approximate univariate convex functions. Furthermore, new Sandwich algo- rithms are proposed, that iteratively add new input data points in a systematic way, until a desired accuracy of the approximation is obtained. We show that our new algorithms that use only function-value evaluations converge quadratically under certain conditions on the derivatives. Under other conditions, linear convergence can be shown. Some numeri- cal examples, including a Strategic investment model, that illustrate the usefulness of the algorithm, are given.approximation;convexity;meta-model;Sandwich algorithm

    Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing

    Get PDF
    The main contents of this paper is two-fold.First, we present a method to approximate multivariate convex functions by piecewise linear upper and lower bounds.We consider a method that is based on function evaluations only.However, to use this method, the data have to be convex.Unfortunately, even if the underlying function is convex, this is not always the case due to (numerical) errors.Therefore, secondly, we present a multivariate data-smoothing method that smooths nonconvex data.We consider both the case that we have only function evaluations and the case that we also have derivative information.Furthermore, we show that our methods are polynomial time methods.We illustrate this methodology by applying it to some examples.approximation theory;convexity;data-smoothing

    The Correct Kriging Variance Estimated by Bootstrapping

    Get PDF
    The classic Kriging variance formula is widely used in geostatistics and in the design and analysis of computer experiments.This paper proves that this formula is wrong.Furthermore, it shows that the formula underestimates the Kriging variance in expectation.The paper develops parametric bootstrapping to estimate the Kriging variance.The new method is tested on several artificial examples and a real-life case study.These results demonstrate that the classic formula underestimates the true Kriging variance.Kriging;Kriging variance;bootstrapping;design and analysis of computer experiments (DACE);Monte Carlo;global optimization;black-box optimization

    The Effect of Transformations on the Approximation of Univariate (Convex) Functions with Applications to Pareto Curves

    Get PDF
    In the literature, methods for the construction of piecewise linear upper and lower bounds for the approximation of univariate convex functions have been proposed.We study the effect of the use of increasing convex or increasing concave transformations on the approximation of univariate (convex) functions.In this paper, we show that these transformations can be used to construct upper and lower bounds for nonconvex functions.Moreover, we show that by using such transformations of the input variable or the output variable, we obtain tighter upper and lower bounds for the approximation of convex functions than without these approximations.We show that these transformations can be applied to the approximation of a (convex) Pareto curve that is associated with a (convex) bi-objective optimization problem.approximation theory;convexity;convex/concave transformation;Pareto curve

    Discrete Least-norm Approximation by Nonnegative (Trigonomtric) Polynomials and Rational Functions

    Get PDF
    Polynomials, trigonometric polynomials, and rational functions are widely used for the discrete approximation of functions or simulation models.Often, it is known beforehand, that the underlying unknown function has certain properties, e.g. nonnegative or increasing on a certain region.However, the approximation may not inherit these properties automatically.We present some methodology (using semidefinite programming and results from real algebraic geometry) for least-norm approximation by polynomials, trigonometric polynomials and rational functions that preserve nonnegativity.(trigonometric) polynomials;rational functions;semidefinite programming;regression;(Chebyshev) approximation

    Kriging Models That Are Robust With Respect to Simulation Errors

    Get PDF
    In the field of the Design and Analysis of Computer Experiments (DACE) meta-models are used to approximate time-consuming simulations. These simulations often contain simulation-model errors in the output variables. In the construction of meta-models, these errors are often ignored. Simulation-model errors may be magnified by the meta-model. Therefore, in this paper, we study the construction of Kriging models that are robust with respect to simulation-model errors. We introduce a robustness criterion, to quantify the robustness of a Kriging model. Based on this robustness criterion, two new methods to find robust Kriging models are introduced. We illustrate these methods with the approximation of the Six-hump camel back function and a real life example. Furthermore, we validate the two methods by simulating artificial perturbations. Finally, we consider the influence of the Design of Computer Experiments (DoCE) on the robustness of Kriging models

    Kriging Models That Are Robust With Respect to Simulation Errors

    Get PDF
    In the field of the Design and Analysis of Computer Experiments (DACE) meta-models are used to approximate time-consuming simulations. These simulations often contain simulation-model errors in the output variables. In the construction of meta-models, these errors are often ignored. Simulation-model errors may be magnified by the meta-model. Therefore, in this paper, we study the construction of Kriging models that are robust with respect to simulation-model errors. We introduce a robustness criterion, to quantify the robustness of a Kriging model. Based on this robustness criterion, two new methods to find robust Kriging models are introduced. We illustrate these methods with the approximation of the Six-hump camel back function and a real life example. Furthermore, we validate the two methods by simulating artificial perturbations. Finally, we consider the influence of the Design of Computer Experiments (DoCE) on the robustness of Kriging models
    • ā€¦
    corecore