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Discrete least-norm approximation by nonnegative

(trigonometric) polynomials and rational functions
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14th June 2005

Abstract

Polynomials, trigonometric polynomials, and rational functions are widely used for the

discrete approximation of functions or simulation models. Often, it is known beforehand,

that the underlying unknown function has certain properties, e.g. nonnegative or increasing

on a certain region. However, the approximation may not inherit these properties automati-

cally. We present some methodology (using semidefinite programming and results from real

algebraic geometry) for least-norm approximation by polynomials, trigonometric polynomials

and rational functions that preserve nonnegativity.

Keywords: (trigonometric) polynomials, rational functions, semidefinite programming, regres-

sion, (Chebyshev) approximation.

JEL Classification: C60.

1 Introduction

In the field of approximation theory, polynomials, trigonometric polynomials, and rational func-

tions are widely used; see e.g. Cuyt and Lenin (2002), Cuyt et al. (2004), Fassbender (1997),

Forsberg and Nilsson (2005), Jansson et al. (2003), and Yeun et al. (2005). For books on ap-

proximation theory, we refer to Powell (1981) and Watson (1980). In the field of computer

simulations (both deterministic and stochastic), they are used to approximate the input/output
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behavior of a computer simulation. The approximation is also called a metamodel, response

surface model, compact model, surrogate model, emulator, or regression model.

We are interested in approximating a function y : R
q 7→ R which is only known up to an error,

in a finite set of points x1, . . . , xn ∈ R
q. We denote the known output values by y(x1), . . . , y(xn).

In practice, it is often known beforehand, that the function y(x) has certain properties. Thus

it may be known e.g. that the function is nonnegative, increasing or convex. However, it could

happen that the approximation does not inherit these properties. It could even be the case that

the data does not have the properties, due to errors in the data.

Therefore, in this paper, we construct (trigonometric) polynomial and rational approxima-

tions that preserve nonnegativity. For polynomials, we also discuss how to construct increasing

polynomial approximations, using the same methodology as for nonnegative approximations.

We illustrate the methodology with some examples.

In the field of splines, there is some literature on shape preserving approximations; see e.g.

Kuijt (1998) and Kuijt and Van Damme (2001). In Kuijt and Van Damme (2001) a linear

approach to shape preserving spline approximation is discussed. Linear constraints are given

for shape-preserving univariate B-splines and bivariate tensorproduct B-splines. However, these

constraints are only sufficient and in general not necessary. In the field of statistical inference,

much work has been done in the estimation of univariate functions restricted by monotonicity;

see e.g. Barlow, Bartholomew, Bremner, and Brunk (1972) and Robertson, Wright, and Dykstra

(1988). However, these methods cannot be used for least-norm approximation, since they are

parameter free.

This paper is organized as follows. In Section 2 we will discuss least-norm approximation by

nonnegative and increasing polynomials. Subsequently, in Section 3 we show that we can use the

same methodology for least-norm approximation by nonnegative univariate trigonometric poly-

nomials. In Section 4, we discuss least-norm approximation by nonnegative rational functions.

In Section 5, we show how to exploit the structure of the problem to speed up the computation

of the solution. Finally in Section 6, we summarize our results and discuss possible directions

for further research.

2 Approximation by polynomials

We are interested in approximating a function y : R
q 7→ R by a polynomial p : R

q 7→ R of

degree d, given input data x1, . . . , xn ∈ R
q and corresponding output data y1, . . . , yn ∈ R (i.e.

yi = y(xi)). Here, p(x) is defined in terms of a given basis of m + 1 monomials:

p(x) =
m
∑

j=0

αjpj(x),

where αj is the coefficient of the j-th monomial pj(x).
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2.1 General least norm approximation by polynomials

Define pα =
[

p(x1), . . . , p(xn)
]T

and y =
[

y(x1), . . . , y(xn)
]T

. The coefficients αj are determined

by solving the following least-norm optimization problem:

min
α

‖pα − y‖. (1)

It is well-known from statistics that the solution for the ℓ2-norm in (1) is given by

α = (DT D)−1DT y,

where α = [α0, . . . , αm]T , and

D =













p0(x
1) p1(x

1) · · · pm(x1)

p0(x
2) p1(x

2) · · · pm(x2)
...

...
...

p0(x
n) p1(x

n) · · · pm(xn)













.

If we use the ℓ1-norm or the ℓ∞-norm, problem (1) can be reformulated as a linear program.

Note that by solving (1), we cannot guarantee that p(x) will be nonnegative, even if the data y

are nonnegative.

2.2 Approximation by nonnegative polynomials

If we know that the function y(x) is nonnegative on a certain bounded region U , we would like

p(x) to be nonnegative on U as well. We could force this by solving the following mathematical

program:

min
α

‖pα − y‖
s.t. p(x) ≥ 0 ∀x ∈ U .

(2)

Note that using the ℓ2-norm, (2) is a nonlinear optimization problem with infinitely many

constraints, which can be rewritten as

min
α,t

t

s.t. ‖pα − y‖2 ≤ t

p(x) ≥ 0 ∀x ∈ U ,

and gives an semi-infinite LP with an additional second order cone constraint. By using the ℓ1-

norm or the ℓ∞-norm, we obtain a linear program. In case we use the ℓ1-norm the mathematical
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program becomes:

min
α,t1,...,tn

n
∑

i=1

ti

s.t.
m
∑

j=0

αjpj(x) ≥ 0 ∀x ∈ U
m
∑

j=0

αjpj(x
i) − ti ≤ y(xi) ∀i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) − ti ≤ −y(xi) ∀i = 1, . . . , n.

(3)

In case we use the ℓ∞-norm the mathematical program becomes:

E := min
α,t

t

s.t.
m
∑

j=0

αjpj(x) ≥ 0 ∀x ∈ U
m
∑

j=0

αjpj(x
i) − t ≤ y(xi) ∀i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) − t ≤ −y(xi) ∀i = 1, . . . , n.

(4)

In the rest of this paper we will only treat the ℓ∞-norm. This kind of approximation is also

called Chebyshev approximation. The methods that we will present in this paper, can also be

used in the ℓ1 and the ℓ2 case.

We will show that we can obtain an upper bound of the solution of optimization problem

(4) by using semidefinite programming, and obtain the exact solution in the univariate case.

Before we proceed, we first give two theorems. The following theorem gives a characterization

of nonnegative polynomials that can be written as sums of squares (SoS) of polynomials.

Theorem 1 (Hilbert (1888)). Any polynomial in q variables with degree d which is nonnegative

on R
q can be decomposed as a sum of squares of polynomials (SoS), for q = 1, or d = 2, or

(q = 2 and d = 4).

See Reznick (2000) for a historical discussion and related results. The next theorem gives a

useful way to represent SoS polynomials in terms of positive semidefinite matrices.

Theorem 2. Let x ∈ R
q and let p(x), a polynomial of degree d = 2k, be SoS. Then there exists

a matrix P � 0 such that p(x) = eT (x)Pe(x), where e(x) is a vector consisting of all monomials

of degree d ≤ k.

Proof. See e.g. Nesterov (2000).
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2.2.1 Univariate nonnegative polynomials

Let us first consider the approximation of a univariate nonnegative function y(x) by a nonneg-

ative polynomial. In this case, Theorem 1 shows that we can write the polynomial as an SoS.

Then, using Theorem 2 we can write this nonnegative polynomial as p(x) = eT (x)Pe(x). For the

ℓ∞-norm, optimization problem (4) can be rewritten as the semidefinite programming problem

min
t,P

t

s.t. eT (xi)Pe(xi) − t ≤ y(xi) ∀i = 1, . . . , n

−eT (xi)Pe(xi) − t ≤ −y(xi) ∀i = 1, . . . , n

P � 0.

(5)

In practice, however, we are only interested in the polynomial to be nonnegative on a bounded

interval; i.e. U = [a0, b0]. Without loss of generality we may consider the interval U = [−1, 1],

since we can scale and translate general intervals [a0, b0] to [−1, 1].

To construct nonnegative approximation, we use the following theorem.

Theorem 3. A polynomial p(x) is nonnegative on [−1, 1] if and only if it can be written as

p(x) = f(x) + (1 − x2)g(x), (6)

where f(x) and g(x) are SoS of degree at most 2d and 2d − 2 respectively.

Proof. See e.g. Powers and Reznick (2000).

Using this, we obtain the following semidefinite programming problem:

min
t,P,Q

t

s.t. eT
1 (xi)Pe1(x

i) + (1 − (xi)2)eT
2 (xi)QeT

2 (xi) − t ≤ y(xi) ∀i = 1, . . . , n

−eT
1 (xi)Pe1(x

i) − (1 − (xi)2)eT
2 (xi)QeT

2 (xi) − t ≤ −y(xi) ∀i = 1, . . . , n

P � 0

Q � 0,

(7)

where e1(x) and e2(x) are defined in a similar way as e(x); i.e. e1(x) is a vector consisting of all

monomials of degree up to d, and e2(x) is a vector consisting of all monomials of degree up to

d − 1. Note that (7) is an exact reformulation of (4) with U = [−1, 1].

2.2.2 Multivariate nonnegative polynomials

If we are interested in approximating a function on R
q, then we can use Hilbert’s theorem in

combination with Theorem 2, use semidefinite programming and solve a multivariate version of

(5). In this way, we obtain an exact solution of (4), for q = 1, d = 2 or (q = 2 and d = 4). In
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the other cases, by assuming the nonnegative polynomial approximation to be SoS and using

Theorem 2, we will merely get an upper bound of the optimal solution of (4).

However, in practice we are primarily interested in nonnegative polynomials on compact

regions, instead of R
q. The following theorem describes a property of a polynomial, which is

positive on a compact semi-algebraic set.

Theorem 4 (Putinar). Assume that the semi-algebraic set F = {x ∈ R
q|gℓ(x) ≥ 0, ℓ =

1, . . . , m̄}, where g1, g2, . . . , gm̄ are polynomials, is compact and that there exists a polynomial

u(x) of the form u(x) = u0(x) +
∑m̄

ℓ=1 uℓ(x)gℓ(x), where u0, u1, . . . , um̄ are SoS, and for which

the set {x ∈ R
q|u(x) ≥ 0} is compact. Then, every polynomial p(x) positive on F has a decom-

position

p(x) = p0(x) +

m̄
∑

ℓ=1

pℓ(x)gℓ(x),

where p0, p1, . . . , pm̄ are SoS.

Proof. See Putinar (1993). For a more elementary proof, see Schweighofer (2004).

If U = {x ∈ R
q|gℓ(x) ≥ 0, ℓ = 1, . . . , m̄} is compact, and if we know a ball B(0, R) such that

U ⊆ B(0, R), then the condition in Theorem 4 holds. Indeed U = U∩B(0, R) = {x ∈ R
q : gℓ(x) ≥

0, ℓ = 1, . . . , m̄, gm̄+1(x) = R2−∑q
i=1 x2

i ≥ 0} and there exists a u(x) = u0(x)+
∑m̄+1

ℓ=1 uℓ(x)gℓ(x),

where u0, u1, . . . , um̄+1 are SoS, for which the set {x ∈ R
q|u(x) ≥ 0} is compact. Take u0(x) =

u1(x) = . . . = um̄(x) = 0 and um̄+1(x) = 1, to obtain B(0, R) = {x ∈ R
q|u(x) ≥ 0}.

Now, we can obtain an upper bound for the solution of (4) by solving semidefinite program-

ming problem:

min
t,P0,...,Pm̄+1

t

s.t.
m̄+1
∑

ℓ=0

eT
ℓ (xi)Pℓeℓ(x

i)gℓ(x
i) − t < y(xi) ∀i = 1, . . . , n

−
m̄+1
∑

ℓ=0

eT
ℓ (xi)Pℓeℓ(x

i)gℓ(x
i) − t < −y(xi) ∀i = 1, . . . , n

Pℓ � 0 ℓ = 0, . . . , m̄ + 1,

(8)

where g0 ≡ 1 and gm̄+1(x) = R2 − ∑q
i=1 x2

i . Note that Theorem 4 does not state which

degree d the polynomials p0, p1, . . . , pm̄+1 have. In practice we have to choose a fixed degree d.

Therefore, by solving (8), we get an upper bound of the maximum error E in (4). Consequently,

by restricting ourselves to polynomials of degree d, we cannot guarantee in Theorem 4 that all

positive polynomials p(x) of degree d can be written as p(x) = p0(x) +
∑m̄+1

ℓ=1 pℓ(x)gℓ(x), with

p0, p1, . . . , pm̄+1 polynomials of degree d. Note that in the univariate case, Theorem 3 gives

upper bounds for the degrees of f(x) and g(x), so for this case we can solve (4) exactly.

Example 2.1
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We consider a two-dimensional example. Given the data in Table 1, we are interested in finding

a nonnegative polynomial of degree d = 3 on [0, 1]2 for which the maximal error at the data

points is minimized. First we exclude the nonnegativity constraint, i.e., we solve (1) for the ℓ∞-

norm. This yields a polynomial on [0, 1]2 that takes negative values. It turns out that E = 0.025

in (4) and the optimal polynomial is given by p(x1, x2) = 0.9747 − 2.3155x1 − 7.1503x2 +

0.8921x2
1 +5.1606x1x2 +15.2446x2

2 +0.5334x3
1 − 2.9790x2

1x2 − 0.8033x1x
2
2 − 9.4827x3

2 and shown

in Figure 1. Now we include the nonnegativity constraint by solving semidefinite optimization
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Figure 1: Optimal polynomial of Example 2.1 without nonnegativity-constraint.

problem (8), i.e., we take R =
√

2, g1(x1, x2) = 1 − x1, g2(x1, x2) = 1 − x2, g3(x1, x2) = x1,

g4(x1, x2) = x2, eT
ℓ (x1, x2) =

[

1 x1 x2

]

, for ℓ = 0, . . . , 4, and e5(x1, x2) = 1. To solve the

semidefinite optimization problem, we use SeDuMi; see Sturm (1999). This gives E = 0.108.

The corresponding optimal polynomial is p(x1, x2) = 0.8917− 2.5084x1 − 3.6072x2 +3.2103x2
1 +

4.2274x1x2 + 5.4395x2
2 − 1.4647x3

1 − 1.9329x2
1x2 − 1.5377x1x

2
2 − 2.7181x3

2, as shown in Figure 2.

Note that the polynomial has real roots as expected.

2.3 Approximation by increasing polynomials

We can easily extend the methodology developed in Section 2.2 to increasing polynomials by

introducing nonnegativity constraints for the (partial) derivatives.
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Figure 2: Nonnegative polynomial of Example 2.1 with nonnegativity-constraint.

no. x1 x2 y

1 0 0 1
2 0.5 0.5 0
3 1 0 0.11
4 0 0.9 0
5 1 1 0.1
6 0 0.5 0
7 0.4 0 0.2
8 1 0.5 0
9 0.6 1 0.15
10 0.25 1 0
11 0.478 0.654 0.3

Table 1: Dataset of Example 2.1.

8



no. Temperature(Kelvin) Coefficient of Thermal Expansion

1 24.41 0.591
2 54.98 4.703
3 70.53 7.03
4 127.08 12.478
5 271.97 16.549
6 429.66 17.848
7 625.55 19.111

Table 2: Dataset of Example 2.2 (thermal expansion of copper).

Suppose we know that the function y(x) is increasing on a certain region U and with respect

to coordinates xi with i ∈ I ⊆ {1, . . . , n}. Then, instead of (4), we need to solve the following

mathematical program:

min
α,t

t

s.t. ∂p(x)
∂xi

≥ 0 ∀i ∈ I, ∀x ∈ U
m
∑

j=1

αjpj(x
i) − t ≤ y(xi) ∀i = 1, . . . , n

−
m
∑

j=1

αjpj(x
i) − t ≤ −y(xi) ∀i = 1, . . . , n.

(9)

Since a partial derivative of a polynomial is also a polynomial, we can use similar techniques as

in Section 2.2 to solve optimization problem (9).

Example 2.2

In this example we consider data of the coefficient of thermal expansion of copper. This data

is taken from Croarkin and Tobias (2005). The coefficient of thermal expansion of copper is an

increasing function of the temperature of copper. In this example we only use a selection of the

data, which is given in Table 2. A scatterplot of this selection of the data is given in Figure 3.

First, we apply Chebyshev approximation with a polynomial of degree d = 5 without requiring

the approximation to be increasing. We get E = 0.1486 in (4), and obtain the polynomial

p(x) = −3.3051+0.1545x+0.2490 ·10−4x2−0.2920 ·10−5x3 +0.8014 ·10−8x4−0.6227 ·10−11x5.

This is the solid line in Figure 3. Note that the approximation is not increasing everywhere. We

observe an oscillating behavior that is one of the well-known drawbacks of using polynomials

for approximations. A method that reduces oscillating behaviour is ridge regression; see e.g.

Montgomery and Peck (1992). Ridge regression, however, cannot guarantee monotonicity. If

we use our method, i.e., if we require the approximation to be increasing, we get E = 0.2847.

We obtain the polynomial p(x) = −4.2922 + 0.2054x − 0.7234 · 10−3x2 + 0.1063 · 10−5x3 −

9
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Figure 3: Example of increasing and non-increasing polynomial approximation.

0.4369 · 10−9x4 − 0.1578 · 10−12x5, which is shown by the dashed line in Figure 3. Indeed, the

approximation is increasing in the input variable.

3 Approximation by trigonometric polynomials

We are interested in approximating a function y : R 7→ R by a univariate nonnegative trigonomet-

ric polynomial, given input data x1, . . . , xn ∈ R and corresponding output data y1, . . . , yn ∈ R.

We can again write a nonnegative trigonometric polynomial as a sum of squares, in a similar

way as done with polynomials.

A trigonometric polynomial of degree d has the form

p(x) = α0 +
d
∑

k=1

(αk sin(kx) + βk cos(kx)) , (10)

where α0, αk and βk are the coefficients.

3.1 General least norm approximation by trigonometric polynomials

Approximation by trigonometric polynomials is similar to approximation by ordinary polynomi-

als. We again define pα,β =
[

p(x1), . . . , p(xn)
]T

and y =
[

y(x1), . . . , y(xn)
]T

, and are interested
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in finding α and β that solve

min
α,β

‖pα,β − y‖,

where ‖ · ‖ is some norm. In Fassbender (1997) efficient numerical methods for least-squares

approximation by trigonometric polynomials are developed. For the ℓ∞-norm we obtain the

following linear program:

min
t,α,β

t

s.t. α0 +

d
∑

k=1

(αk sin(kxi) + βk cos(kxi)) − t ≤ y(xi) ∀i = 1, . . . , n

−α0 −
d
∑

k=1

(αk sin(kxi) + βk cos(kxi)) − t ≤ −y(xi) ∀i = 1, . . . , n.

We can easily adapt the methods that we will present, to the cases of the ℓ1-norm and the

ℓ2-norm.

3.2 Approximation by nonnegative trigonometric polynomials

The following theorem states that nonnegative univariate trigonometric polynomials can be

expressed in terms of a positive definite matrix.

Theorem 5. If p(x) is a nonnegative trigonometric polynomial of degree d, then there exists a

decomposition p(x) = eT (x)Qe(x), where Q � 0. If d = 2k + 1 is odd, then

e(x) =
[

cos
(x

2

)

, sin
(x

2

)

, . . . , cos
(

kx +
x

2

)

, sin
(

kx +
x

2

)]T

,

otherwise d = 2k, and

e(x) = [1, cos(x), sin(x), . . . , cos(kx), sin(kx)]T .

Proof. A sketch of a proof is given in Lofberg and Parrilo (2004).

We can use this theorem to construct nonnegative trigonometric polynomial approximations

by solving the SDP

E := min
t,Q

t

s.t. eT (xi)Qe(xi) − y(xi) ≤ t ∀i = 1, . . . , n

−eT (xi)Qe(xi) + y(xi) ≤ t ∀i = 1, . . . , n

Q � 0.

(11)

Note that (10) is a periodic function with period 2π. However, the data is in general non-

11



no. Time(min) Concentration(%)

1 5 0.0
2 7 0.0
3 10 0.7
4 15 7.2
5 20 11.5
6 25 15.8
7 30 20.9
8 40 26.6

Table 3: Oil shale dataset (Example 3.1).

periodic. Nevertheless, we can still approximate a non-periodic function on a compact interval

by a trigonometric function by scaling and translating the data to [0, π].

Example 3.1

We consider data on the pyrolysis of oil shale, taken from Bates and Watts (1988). This data,

obtained by Hubbard and Robinson (1950) represents the relative concentration of oil versus

time during pyrolysis of oil shale. We used a selection of the data as given in Table 3. This data

concerns the relative concentration of oil versus time at a temperature of 673K. A scatterplot

of the data is given in Figure 4. Obviously the concentration of oil is nonnegative. However, if

we approximate the concentration as a function of time by a trigonometric polynomial of degree

2, we get E = 0.7348 in (11), and we obtain the trigonometric polynomial

p(x) = 12.6303 + 12.1492 sin(−1.7054 + 0.0898x) − 8.0262 cos(−1.7054 + 0.0898x)+

6.3258 cos2(−1.7054 + 0.0898x)−
0.2234 sin(−1.7054 + 0.0898x) cos(−1.7054 + 0.0898x).

This trigonometric polynomial is plotted in Figure 4 with a solid line. This trigonometric poly-

nomial takes negative values. However, if we use the new methodology to obtain a nonnegative

trigonometric polynomial, we obtain the trigonometric polynomial

p(x) = 7.0570 − 9.6844 cos(−1.7054 + 0.0898x) + 11.2141 sin(−1.7054 + 0.0898x)+

13.5710 cos2(−1.7054 + 0.0898x)+

1.0457 sin(−1.7054 + 0.0898x) cos(−1.7054 + 0.0898x)+

6.3186 sin2(−1.7054 + 0.0898x),

which is represented by the dashed line in Figure 4. In this case, E = 0.8187.

We cannot extend this methodology to construct increasing trigonometric polynomial ap-
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Figure 4: Example of nonnegative and general trigonometric approximation.

proximations in a similar way as done for polynomials, because trigonometric polynomials are

periodic functions.

4 Approximation by rational functions

Given input data x1, . . . , xn ∈ R
q and corresponding output data y1, . . . , yn ∈ R, we are in-

terested in approximating a function y : R
q 7→ R. In this section we consider approximation

by rational functions. We first show how to approximate a function y(x) by a rational func-

tion, without preserving characteristics. A rational function is a quotient of two polynomials

p(x) =
∑m

j=1 αjpj(x) and q(x) =
∑m̂

k=1 βkqk(x); i.e. r(x) =
Pm

j=0 αjpj(x)Pm̂
k=0 βkqk(x)

. Here m and m̂ are the

number of monomials of the polynomials p(x) and q(x) respectively.

4.1 General least norm approximation by rational functions

Analogous to pα, we define rα,β = [r(x1), . . . , r(xn)]T . We are interested in solving

min
α,β

‖rα,β − y‖,

where ‖ · ‖ is some norm. In the following, we will discuss the methodology for the ℓ∞-norm,

as done in Powell (1981), Chapter 10, and then extend this with a method to prevent the

13



denominator from being zero. A similar methodology can be used for the ℓ1-norm and the

ℓ2-norm.

For the ℓ∞-norm, we obtain the following optimization problem by multiplying each term

by the denominator of r(x):

min
t,α,β

t

s.t.
m
∑

j=0

αjpj(x
i) − y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t

m̂
∑

k=0

βkqk(x
i) i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) + y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t

m̂
∑

k=0

βkqk(x
i) i = 1, . . . , n.

(12)

Note that (12) is a nonlinear optimization problem. However, we can solve this problem effi-

ciently by using binary search. We choose an upper bound for t, say t̄, and a lower bound t = 0,

and consider the interval [t, t̄]. Then we define t̂ = t̄+t
2 , and check whether the constraints in

(12) are met for this value of t; i.e. we check whether there exist α and β, for which



























m
∑

j=0

αjpj(x
i) − y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t̂

m̂
∑

k=0

βkqk(x
i) i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) + y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t̂

m̂
∑

k=0

βkqk(x
i) i = 1, . . . , n.

(13)

This is a linear feasibility problem. If the answer is ’yes’, then our new interval becomes [t, t̄+t
2 ],

and otherwise our new interval becomes [ t̄+t
2 , t̄]. We repeat this until the interval is sufficiently

small.

Instead of just checking the constraints (13), we can also introduce a new variable ε and

solve the linear program

min
ε,α,β

ε

s.t.
m
∑

j=0

αjpj(x
i) − y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t̂

m̂
∑

k=0

βkqk(x
i) + ε i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) + y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t̂

m̂
∑

k=0

βkqk(x
i) + ε i = 1, . . . , n

m̂
∑

k=0

βkqk(ζ) = 1,

(14)

where ζ ∈ R
q is a constant. Let εopt be the optimal ε in (14). The last constraint is added

to prevent the optimization problem from being unbounded if εopt < 0. A common choice is

ζ = 0. Now we can distinguish three cases. If εopt < 0, then t̂ is greater than the least maximum

error, and we can tighten the bounds of our interval to [t, t̂]. In fact, by using the value of
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εopt, we can even tighten the interval to

[

t, t̂ − εopt

maxi=1,...,n{
Pm̂

k=0 β
opt

k
qk(xi)}

]

, where βopt
k are the

optimal βk in optimization problem (14). If εopt = 0, then the corresponding p(x)
q(x) is the optimal

approximation, and finally if εopt > 0, then our upper bound t̂ is too small, and we can tighten

our interval to [t̂, t].

Note that q(x) =
∑m̂

k=0 βkqk(x) possibly becomes zero, which is not desirable if we want

to avoid poles. We can easily prevent q(x) from becoming zero on a predefined compact set

U = {x ∈ R
q|gℓ(x) ≥ 0,∀ℓ = 1, . . . , m̄}, where gℓ are polynomials, by again using Theorem 2

and Theorem 4. Then, we obtain the following semidefinite optimization problem:

min
ε,α,P d

0 ,...,P d
n

ε

s.t.
m
∑

j=0

αjpj(x
i) −

(

y(xi) − t̂
)

(

m̄+1
∑

ℓ=0

eT
ℓ (xi)P d

ℓ eℓ(x
i)gℓ(x

i) + δ

)

≤ ε i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) +

(

y(xi) − t̂
)

(

m̄+1
∑

ℓ=0

eT
ℓ (xi)P d

ℓ eℓ(x
i)gℓ(x

i) + δ

)

≤ ε i = 1, . . . , n

P d
ℓ � 0 ℓ = 0 . . . , n

m̄+1
∑

ℓ=0

eT
ℓ (ζ)P d

ℓ eℓ(ζ)gℓ(ζ) = 1,

where δ > 0 is a small number, which prevents the denominator q(x) from becoming too small.

4.2 Approximation by nonnegative rational functions

To construct nonnegative rational approximations, we need a characterization of nonnegative

rational functions. The following theorem gives a characterization of nonnegative rational func-

tions on open connected sets or the (partial) closure of such a set. Note that two polynomials

p(x) and q(x) are called relatively prime, if they have no common factors.

Theorem 6. Let p(x) and q(x) be relatively prime polynomials on R
q and let U ⊆ R

q be an

open connected set or the (partial) closure of such a set. Then the following two statements are

equivalent:

1. p(x)/q(x) ≥ 0 ∀ x ∈ U such that q(x) 6= 0;

2. p(x) and q(x) are both nonnegative, or both nonpositive, on U ;

Proof. See Jibetean and De Klerk (2003).

Therefore, to enforce a rational approximation to be nonnegative on a set U that meets the

conditions of Theorem 6, without loss of generality, we may assume that both the numerator

p(x) and the denominator q(x) are nonnegative. Note that requiring q(x) to be positive also

prevents the rational function from having poles.
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Using this characterization, the optimization problem becomes as follows:

min
ε,α,β

ε

s.t.
m
∑

j=0

αjpj(x
i) − y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t̂

m̂
∑

k=0

βkqk(x
i) + ε i = 1, . . . , n

−
m
∑

j=0

αjpj(x
i) + y(xi)

m̂
∑

k=0

βkqk(x
i) ≤ t̂

m̂
∑

k=0

βkqk(x
i) + ε i = 1, . . . , n

m
∑

j=0

αjpj(x) ≥ 0 ∀x ∈ U

m̂
∑

k=0

βkqk(x) ≥ δ ∀x ∈ U

m̂
∑

k=0

βkqk(ζ) = 1,

(15)

where δ > 0 is a small number and ζ ∈ R
q is a constant.

Now, we use Theorem 2 in combination with Theorem 4, to model optimization problem

(15) as a semidefinite programming problem:

min
ε,P n

ℓ
,P d

ℓ

ε

s.t.
m̄+1
∑

ℓ=0

eT
ℓ (xi)Pn

ℓ eℓ(x
i)gℓ(x

i) − (y(xi) + t̂)

(

m̄+1
∑

ℓ=0

eT
ℓ (xi)P d

ℓ eℓ(x
i)gℓ(x

i) + δ

)

≤ ε

i = 1, . . . , n

−
m̄+1
∑

ℓ=0

eT
ℓ (xi)Pn

ℓ eℓ(x
i)gℓ(x

i) + (y(xi) − t̂)

(

m̄+1
∑

ℓ=0

eT
ℓ (xi)P d

ℓ eℓ(x
i)gℓ(x

i) + δ

)

≤ ε

i = 1, . . . , n

Pn
ℓ � 0 ℓ = 0, . . . , m̄ + 1

P d
ℓ � 0 ℓ = 0, . . . , m̄ + 1

m̄+1
∑

ℓ=0

eT
ℓ (ζ)P d

ℓ eℓ(ζ)gℓ(ζ) = 1.

(16)

In the multivariate case (16) is just an approximation of (15), since we do not know the degree

of the monomials of eℓ(x). However, in the univariate case (16) is an exact reformulation of

(15), since in the univariate case Theorem 3 specifies the degree d of the polynomials f(x) and

g(x), we know the degree of the monomials of eℓ(x) in (16).

Example 4.1

In this example we use the same data on the pyrolysis of oil shale as used in Example 3.1.

Note again that the concentration of oil should be nonnegative. However, if we approximate the

concentration as a function of time by a rational function by quadratic numerator and quadratic
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denominator, we get E = 0.5962, and obtain the rational function

r(x) = −78400
0.1162622153 · 1019 − 0.3521415490 · 1018x + 0.2544537885 · 1017x2

−0.3691739529 · 1021 − 0.767285004 · 1021x − 0.319303558 · 1020x2
,

which is plotted in Figure 5. Obviously, the rational function is not nonnegative. However, if
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Figure 5: Example of nonnegative and general rational approximation.

we force the rational function to be nonnegative, we obtain the function

r(x) = 0.4883 · 10−3−0.1015375413 · 1027 + 0.2962932361 · 1026x − 0.2161508979 · 1025x2

−.3859790305 · 1022 − 0.126652437 · 1021x − .224221696 · 1020x2
,

which is represented by the dashed line in Figure 5. Now, E = 0.7178. The increase in E is only

due to forcing the nonnegativity, since this is a univariate example.

We cannot easily extend the methodology for least-norm approximation by increasing ra-

tional functions, because the coefficients of polynomials in numerator and denominator of the

derivative of a rational function p(x)
q(x) are not linear in the coefficients of p(x) and q(x) anymore.
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5 Exploiting structure during computation

Semidefinite programming (SDP) solvers usually require the problem to be cast in the form:

min
X�0,x≥0

{trace(CX) + cT x | trace(AiX) + aT
i x = bi (i = 1, . . . , m)},

where C, A1, . . . , Am are data matrices and b, c, a1, . . . , am are data vectors.

The approximation problems we have considered may all be formulated as (SDP) problems

in this form, and with the special property that the matrices Ai are rank one matrices. For

example, in problem (7), we have Ai = e(xi)e(xi)T — a rank one matrix.

This structure can be exploited by interior point algorithms to speed up the computation.

In particular, the solver DSDP (see Benson et al. (2000)) has been designed to do this.

Thus it is possible to solve problem (7) within minutes for up to a thousand data points

and with a approximating polynomial of degree up to a thousand. For the other univariate

approximation problems we have considered, we can solve instances of similar sizes in the order

of a few minutes.

For the multivariate approximation problems, e.g. (8), the size of the monomial vector eℓ(x
i)

is given by
(

q+dℓ−1
dℓ

)

, where 2dℓ is the degree of the function pℓ (see Section 2.2.2) and q is the

dimension (number of variables).

If q and the dℓ values are such that
(

q+dℓ−1
dℓ

)

is at most a hundred, and the number of data

points at most n = 100, then efficient computation is still possible.

6 Conclusions and further research

We have presented a least-norm approximation method to approximate functions by nonnegative

and increasing polynomials, nonnegative trigonometric polynomials, and nonnegative rational

functions. This methodology uses semidefinite programming and results from the field of real

algebraic geometry. We have given several artificial and real-life examples, which demonstrate

that our methodology indeed results in nonnegative or increasing approximations. We also

studied how to exploit the structure of the problem to make the problem computationally easier.

As a result of this we can deal with relatively large problems.

For further research we are interested in studying least-norm approximation by polynomials

to approximate convex functions. In the univariate case, we can easily use the same methodology

as presented in this paper, since a polynomial is convex if and only if its second derivative is

nonnegative. In the multivariate quadratic case, the problem of approximating a function by a

convex quadratic polynomial is already studied by Den Hertog, De Klerk, and Roos (2002).

18



References

Barlow, R., R. Bartholomew, J. Bremner, and H. Brunk (1972). Statistical inference under order

restrictions. Chichester: Wiley.

Bates, D. and D. Watts (1988). Nonlinear regression analysis and its applications. New York:

Wiley.

Benson, S., Y. Ye, and X. Zhang (2000). Solving large-scale sparse semidefinite programs for

combinatorial optimization. SIAM Journal on Optimization, 10, 443–461.

Croarkin, C. and P. Tobias (Eds.) (2005). NIST (National Institute of Standards and Tech-

nology)/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/

handbook/: World Wide Web.

Cuyt, A. and R. Lenin (2002). Computing packet loss probabilities in multiplexer models using

adaptive rational interpolation with optimal pole placement. Technical report, University of

Antwerp.

Cuyt, A., R. Lenin, S. Becuwe, and B. Verdonk (2004). Adaptive multivariate rational data

fitting with applications in electromagnetics. Technical report, University of Antwerp.

Fassbender, H. (1997). On numerical methods for discrete least-squares approximation by

trigonometric polynomials. Mathematics of Computation, 66(218), 719–741.

Forsberg, J. and L. Nilsson (2005). On polynomial response surfaces and Kriging for use in

structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 29,

232–243.

Hertog, D. den, E. de Klerk, and K. Roos (2002). On convex quadratic approximation. Statistica

Neerlandica, 563, 376–385.
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