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Abstract. Finding fluence maps for intensity-modulated radiation therapy
(IMRT) can be formulated as a multi-criteria optimisation problem for which
Pareto optimal treatment plans exist. To account for the dose-per-fraction effect
of fractionated IMRT, it is desirable to exploit radiobiological treatment plan
evaluation criteria based on the linear-quadratic (LQ) cell survival model as a
means to balance the radiation benefits and risks in terms of biologic response.
Unfortunately, the LQ-model based radiobiological criteria are nonconvex
functions, which make the optimisation problem hard to solve. We apply the
framework proposed by Romeijn, Dempsey & Li (2004) (Phys. Med. Biol. 2004,
49 1991-2013) to find transformations of LQ-model based radiobiological functions
and establish conditions under which transformed functions result in equivalent
convex criteria that do not change the set of Pareto optimal treatment plans.
The functions analysed are: the LQ-Poisson based model for tumour control
probability (TCP) with and without inter-patient heterogeneity in radiation
sensitivity, the LQ-Poisson based Relative Seriality s-model for normal tissue
complication probability (NTCP), the equivalent uniform dose (EUD) under the
LQ-Poisson model, and the fractionation-corrected Probit-based model for NTCP
according to Lyman, Kutcher and Burman. These functions differ from the ones
analysed before in that they cannot be decomposed into elementary EUD or
generalized-EUD functions. In addition, we show that applying increasing and
concave transformations to the convexified functions is beneficial for the piecewise
approximation of the Pareto efficient frontier.

Keywords: Radiotherapy, intensity-modulated radiation therapy, fluence map
optimisation, convex optimisation, radiobiology
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1. Introduction

It is generally acknowledged that designing fluence maps for high-energy photon
beams in intensity-modulated radiation therapy (IMRT) can be posed as a constrained
optimisation problem (Börgers 1997, Küfer, Scherrer, Monz, Alonso, Trinkaus,
Bortfeld & Thieke 2003, Reemtsen & Alber 2006). The aim of the optimisation
problem is to find beam fluence maps that deposit a sufficiently high dose to the target
volume and simultaneously spare organs at risk (OARs) and other surrounding normal
tissue as much as possible. A mathematical fluence map optimisation (FMO) model
is required to guide the inverse treatment planning process through the search space
of possible solutions. Such models are typically based on a set of conflicting treatment
plan evaluation criteria that reflect how well the treatment goals and restrictions are
satisfied.

These criteria can either be formulated as physical criteria, i.e. on measurable
physical quantities like doses and volumes, or as biological criteria that reflect the
responses of the different tissues to dose distributions (Brahme 1995). Physical criteria
are often implemented as a dose-dependent function calculating the mean-squared
deviation from a prescribed target dose level. The radiobiological rationale of these
criteria is questionable since positive and negative deviations from the target dose
have different biological consequences, but are weighted equally using a quadratic
penalty function. In this paper, we focus on biological criteria only, because they have
been shown to predict the response of tumours and healthy tissues more adequately
than physical criteria by taking the underlying radiation biology into account. The
relevance of biological treatment goals, leading to nonlinear criteria as tumour control
probability (TCP), normal tissue complication probability (NTCP), (generalized)
equivalent uniform dose ((g)EUD) or dose-volume based criteria, has generally been
acknowledged during the past years (Niemierko 2005). Formulation of clinically
relevant radiobiological FMO problems often requires the inequality constraints to
be formulated in terms of clinically prescribed tolerance bounds, e.g., NTCP ≤ ε,
where ε is an acceptable probability of injury.

Direct application of such nonlinear and nonconvex biological criteria as objective
and constraint functions can make the FMO problem very hard to solve, especially
when the number of optimisation variables (i.e., the beamlet weight intensities) is
large. According to Hindi (2004) various sources exist for the difficulties encountered
in large-scale nonconvex optimisation. First, the search space may be riddled with
multiple local optima. Second, the feasible set could be empty. Third, stopping criteria
used in general optimisation algorithms are often arbitrary. Forth, the problem may be
degenerate, in which case the same optimal value is attained for multiple solutions (see,
e.g., Alber, Meedt, Nusslin & Reemtsen (2002)). Fifth, optimisation algorithms might
have poor convergence rates. Sixth, numerical problems could cause the optimisation
algorithm to stop or roam.

Fortunately, in case of minimisation, it is known that if all objective functions
and upperbound-inequality constraint functions are convex, the first three difficulties
disappear: any local minimum is necessarily a global minimum; the solution set is
convex and therefore comprises either a single solution or is infinite; and very precise
stopping criteria are available using duality (see, e.g., Bertsekas (1999)). However,
convergence rate and numerical stability remain a potential problem. If, in addition to
convexity, the objective and constraint functions allow for self-concordant barriers, the
issues of convergence and numerical sensitivity could be avoided using interior point
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methods (Nesterov & Nemirovski 1994). Hence, it is possible to solve a large class of
convex optimisation problems with great efficiency using local solvers like gradient-
based algorithms. Convexity of the criteria is also sufficient to guarantee that the
Pareto efficient frontier is convex in case the FMO model is multi-criteria (Romeijn
et al. 2004). This is of particular interest in case piecewise linear approximation
techniques like Sandwich type algorithms are used to estimate the Pareto efficient
frontier (Craft, Halabi, Shih & Bortfeld 2006, Hoffmann, Siem, den Hertog, Kaanders
& Huizenga 2006).

Radiobiological criteria like TCP and NTCP are often sigmoidal functions of
dose and hence are inherently nonlinear and nonconvex. Consequently, their direct
implementation necessarily leads to nonconvex optimisation problems. Recently,
Romeijn et al. (2004) presented a unifying framework for multi-criteria fluence map
optimisation problems that establishes conditions under which well-known nonconvex
radiobiological treatment plan evaluation criteria can be transformed into convex
criteria while preserving the set of Pareto efficient solutions. In particular, they
showed that transformations of criteria such as TCP, NTCP and sigmoidal functions
of (g)EUD exist that are equivalent to criteria formulated in terms of (g)EUD only,
concluding that only two distinct Pareto efficient frontiers exist. Others have explored
the convexity properties of transformed radiobiological treatment plan evaluation
criteria as well (Deasy 1997, Choi & Deasy 2002). However, to the best of our
knowledge the majority of convexity analyses reported so far are limited to simple,
single-hit linear cell survival models that do not take into account fractionation effects,
whereas in clinical practice almost all radiation treatments are delivered over multiple
fractions.

As an extension of the work by Romeijn et al. (2004) we explicitly include the
dose-per-fraction effect in the convexity analysis of commonly occuring radiobiological
criterion functions by using the linear quadratic (LQ) cell survival model (see, e.g.,
Fowler (1989)). We analyse TCP, NTCP and EUD criteria that are not related to
the elementary (linear-Poisson) EUD or (power-law) gEUD model, and thus yield
different Pareto efficient frontiers from the criteria analysed by Romeijn et al. (2004).
More specifically, we establish transformations of the following criterion functions
and investigate the conditions under which these criteria are strictly convex/concave
depending on the criterion to be minimised/maximised, respectively: LQ- Poisson
model based TCP function, LQ-Poisson model based Relative Seriality NTCP
function, LQ-Poisson model based EUD function, and the fractionation-corrected
Probit-model-based NTCP function according to Lyman, Kutcher, and Burman.
Strict convexity/concavity of the objective function is an interesting property, as it is a
sufficient condition for the existence of a unique solution (i.e., minimiser/maximiser)
that rules out the possibility of multiple local optima (i.e., minima/maxima) (see,
e.g., Bertsekas (1999)). Furthermore, we present a detailed convexity analysis of
the (transformed) population- averaged TCP function that incorporates inter-patient
radiosensitivity heterogeneity, for which Choi & Deasy (2002) could not rule out the
possibility of multiple local minima.
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2. Mathematical definitions

2.1. Multi-criteria optimisation for IMRT

To introduce the problem, we confine to the essential mathematics and refer to
(Hoffmann et al. 2006) for a more comprehensive enunciation. In IMRT optimisation,
the dose distribution D = (D1, . . . , DM ) is a linear mapping of the bixel weights
w = (w1, . . . , wN ) by the dose deposition operator P:

D(w) = P · w.

Hence, the dose in voxel i can be denoted as a weighted sum over all N bixel weights

Di(w) =
N∑

j=1

Pij wj ,

where Pij is the dose deposited in voxel i from bixel j at unit intensity. This
represents the discretised form of the Fredholm integral equation of the first kind
that is commonly encountered in solving the inverse problem of radiation treatment
planning (Lind 1990). The elements of P describe the physics of the beam-tissue
interaction, and can be pre-calculated using various dose calculation algorithms.

Given the matrix P, it is the aim of the optimizer to find a suitable vector w
that satisfies the optimisation goals. Typically, the goals are formulated by a set
of objective functions Fk : R

M
+ �→ R+, k = 1, . . . ,K, where K is the number of

objective functions. The constraint functions Bl : R
M
+ �→ R+, l = 1, . . . , L, where L

is the number of constraint functions, define certain equalities and inequalities that
the design variable w and the dose distribution D(w) must satisfy. Each criterion
function quantifies the plan-evaluation score as a function of the dose distribution
D(w). Without loss of generality, it is assumed that lower values are preferred to
higher values for each of the criterion functions.

Typically, the constrained multi-criteria optimisation problem in IMRT is
formulated as:

min
w

F(D(w)) =

⎛
⎜⎜⎜⎝

F1(D(w))
F2(D(w))

...
FK(D(w))

⎞
⎟⎟⎟⎠

s.t. Bl(D(w)) ≤ 0, l = 1, . . . , L
D(w) = P · w
w ≥ 0.

(1)

Since probem (1) is associated with multiple solutions, the concept of Pareto efficiency
(see, e.g., Miettinen (1999)) is applied to restrict to solutions that have the property
that no single objective value can be improved without deteriorating at least one other
objective value. Solutions that comply with this definition are called Pareto optimal
(also called Edgeworth-Pareto optimal, efficient, nondominated or noninferior). In
the objective space, the set of Pareto optimal plans is mapped to the Pareto efficient
frontier . Since the dimension of the objective space is much less than that of the
solution space, this frontier is used by the decision maker to navigate efficiently through
the set of solutions and select a compromise solution that best meets with his/her
approval. Therefore, it is important to have an algorithm that generates a discrete
subset of Pareto optimal solutions that forms a representative estimate of the true
Pareto efficient frontier (Craft et al. 2006, Hoffmann et al. 2006).
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2.2. Commonly used radiobiological treatment plan evaluation criteria

Several mathematical models have been developed to describe the dose-response
relationship for tumours and normal tissues. We analyse a commonly used mechanistic
TCP model and two well-known NTCP models; a mechanistic and a phenomenological
one.

2.2.1. Mechanistic dose-response relationship based on Poisson model To calculate
the dose response to a heterogeneous dose distribution, the internal infrastructural
organization (i.e., volume dependence) of the irradiated tissue is taken into account.

For eradication of all clonogenic cells of a tumour, every individual tumour
element has to be eradicated. Hence, the tumour control probability (TCP) is the
product of all individual responses. Based on the well-known linear-quadratic (LQ)
Poisson model without cell repopulation in time (Fowler 1989), the TCP function is
denoted as:

TCPLQ(D) = exp

[
−N0

N∑
k=1

vk SFLQ(Dk)

]
, (2)

where SFLQ(Dk) = e−αDk−βDk
2/n is the surviving fraction of cells exposed to dose

Dk in voxel k, vk is the relative volume of voxel k, N0 is the total initial number
of clonogenic cells, α is the intrinsic radiosensitivity representing the nonrepairable
radiation damage, β represents a repairable type of injury that is responsible for the
dose-per-fraction effect, and n is the number of treatment fractions. The α/β ratio
of the LQ-model then determines the tissue’s sensitivity to alterations in radiation
fraction size (Barendsen 1982).

The Relative Seriality s-model is the most well-known mechanistic normal tissue
dose-response model that is based on the LQ-Poisson survival function (Källman,
Ågren & Brahme 1992). For an OAR irradiated with a heterogeneous dose distribution
the model is expressed as:

NTCPRS(D) =

[
1 −

N∏
k=1

[1 − PLQ(Dk)s]vk

] 1
s

, (3)

where PLQ(Dk) = exp(−N0 · SFLQ(Dk)) is the Poisson approximation of the binomial
probability that no cells survive the dose Dk, and s is the relative seriality parameter
that characterizes the internal organization of a tissue. A value of s ≈ 0 represents
a largely parallel organ (e.g., lung, parotid or liver), whereas s ≈ 1 corresponds to a
serial organ (e.g., spinal cord or esophagus).

Response for patient population with inter-tumoural variation of radiation sensitivity.
The LQ-Poisson based TCP function of (2) describes the tumour response for an
individual patient. However, the clinically measured dose response is a population-
averaged dose response, which differs from the individual response due to inter-
individual variability in radiobiological characteristics. A population-averaged TCP
function, TCPpop, can be constructed by averaging an individual TCP function,
TCPind, over the range of parameters found in a population (see, e.g., Roberts &
Hendry (1998)). Assuming that only the radiosensitivity α is subject to variations,
the population TCP function can be expressed as

TCPpop(D) =
∫ ∞

0

φ(α)TCPind(D, α)dα, (4)
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where φ(α) is the probability density function of the parameter α.
For φ(α) often a normal probability density function has been used, assuming

the variation of β to be correlated by a constant value of α/β (e.g., Sanchez-Nieto
& Nahum (2000)). Others have applied the log-normal distribution to limit the
parameter range of α to biologically meaningful values (Keall & Webb 2007). We
analyse both the normal and log-normal averaged TCPpop function for log-concavity.

LQ-model-based equivalent uniform dose. The concept of equivalent uniform dose
(EUD) was first introduced by Niemierko (1997) by equating the TCP of (2) to the
TCP of an equivalent homogeneous distribution, i.e., TCPLQ(D) ≡ TCP(EUDLQ(D)),
and solving for EUDLQ(D). It is easy to show (see, e.g., McGary, Grant & Woo (2000))
that EUD under the LQ-Poisson model can be expressed as:

EUDLQ(D) = −1
2

α

β
n

[
1 −

√
1 − 4β

α2n
ln SFLQ(D)

]
, (5)

with

SFLQ(D) =
N∑

k=1

vk e−αDk−βDk
2/n.

Others have shown that the EUD under the (single-hit) linear-Poisson model is concave
(Choi & Deasy 2002, Romeijn et al. 2004). We analyse the concavity of (5) using
a direct approach and compare the result to (Bortfeld, Craft, Dempsey, Halabi &
Romeijn 2008), which has been established under an indirect approach using Hardy,
Littlewood & Pólya (1952, p. 88, Theorem 106).

2.2.2. Phenomenological dose-response relationship based on Probit model Assuming
a normal distribution of intrinsic radiosensitivities, Lyman (1985) and Kutcher &
Burman (1989) applied the Probit model to calculate the response of an OAR to a
heterogeneous dose distribution according to:

NTCPLKB(D) = Φ
(

gEUDa(D) − D50

m D50

)
, (6)

where Φ(z) = 1/
√

2π
∫ z

−∞ e−t2/2dt is the standard normal cumulative distribution
function, D50 denotes the uniform dose where a 50% complication probability occurs,
m determines the slope of the sigmoidal function Φ, and gEUDa(D) is the generalized
equivalent uniform dose (Niemierko 1999) of the dose distribution D:

gEUDa(D) =

[
N∑

k=1

vk Dk
a

] 1
a

, (7)

and a ≥ 1 is a tissue-dependent parameter that describes the volume dependence.
To account for the dose-per-fraction effect of a multi-fraction treatment, the

dose to each voxel is converted into an iso-effective biologically effective dose (BED)
(Fowler 1989) prior to calculation of the gEUD:

BED(Di) = Di

(
1 +

Di/n

α/β

)
.
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Subsequent calculation of the gEUD from the BED-converted dose distribution yields
the generalized equivalent uniform biologically effective dose (gEUBED) function:

gEUBEDa(D) = gEUDa(BED(D))

=

[
N∑

k=1

vk BED(Dk)a

] 1
a

. (8)

The fractionation-corrected LKB model then becomes:

NTCPLKB(D) = Φ
(

gEUBEDa(D) − BED50

m BED50

)
, (9)

where BED50 = BED(D50).

2.2.3. Composite evaluation functions For multiple targets and vital organs, the
overall probability of benefit and injury is respectively given by:

TCP(D) =
T∏

j=1

TCPj(D)ηj , (10)

and

NTCP(D) = 1 −
S∏

j=1

[1 − NTCPj(D)]ξj , (11)

where T and S are the number of targets and vital organs, respectively, TCPj(D)
is the control probability for target j, ηj is the fractional volume of the jth target,
NTCPj(D) is the complication probability in organ j, and ξj is the relative weight of
the jth complication, such that

∑T
j ηj =

∑S
j ξj = 1. Here, TCPj(D) and NTCPj(D)

can be any of the fractionation-corrected dose-response models from the preceding
subsections.

Another composite objective function is the probability of uncomplicated tumour
control, P+, which is a measure to a priori balance between treatment benefit and
injuries (see, e.g., Brahme (1995)). In generalized form it is defined as

P δ
+(D) = (1 − δ)P 0

+(D) + δP 1
+(D),

where P 0
+(D) ≡ TCP(D)−NTCP(D), P 1

+(D) ≡ TCP(D)[1−NTCP(D)] and δ is the
fraction of patients for which tumour and normal tissue responses are statistically
independent (0 ≤ δ ≤ 1). δ = 0 corresponds to the case that the events of
tumour control and severe injury are totally correlated (i.e., no complications without
achieving tumour control). For δ = 1 it is assumed that tumour control is independent
of complications. Note that P δ

+(D) is a convex combination of P 0
+(D) and P 1

+(D).
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3. Methods

3.1. Convex multi-criteria optimisation

A general convex multi-criteria optimisation problem is formulated in standard form
as:

min
x

G(x) =

⎛
⎜⎜⎜⎝

G1(x)
G2(x)

...
GK(x)

⎞
⎟⎟⎟⎠

s.t. Cl(x) ≤ 0, l = 1, . . . , L
El(x) = 0, l ∈ E .

(12)

Here x ∈ R
M is the optimisation variable, Gk : R

M �→ R are convex objective
functions, Cl : R

M �→ R are convex inequality constraint functions, Ei : R
M �→ R are

affine equality constraint functions, and E is the set of indices for equality constraints.
In case of the FMO problem in IMRT (1), the optimisation variable x is obtained

from the dose deposition operator by a linear mapping of the design variable w, which
we control to generate fluence maps. If the only constraint on the treatment plan is
the nonnegativity of bixel weights, then the set A of allowed bixel weights is convex.
Therefore, the set R of realizable dose distributions (being the image of A under the
linear dose deposition operator P) is convex. For the multi-criteria FMO problem to
be cast as a convex problem (12), the objective and constraint functions of (1) should
all be convex or transformed into equivalent convex functions.

Equivalence of optimisation problem for transformed criterion functions. Direct
application of the (nonconvex) criterion functions as objective and constraint functions
would result in a nonconvex problem. Romeijn et al. (2004) have shown that
transforming any or all criterion functions of the general (nonconvex) minimisation
problem (1) via strictly increasing functions leads to an equivalent Pareto efficient
frontier. This property can be used to convexify problem (1) such that it can be
formulated as a convex problem (12). A sufficient condition is that strictly increasing
transformations hk : R �→ R (k = 1, . . . ,K) and h̃l : R �→ R (l = 1, . . . , L) exist, such
that compositions

Gk(x) = (hk ◦ Fk)(x) ≡ hk(Fk(x))

and

Cl(x) = (h̃l ◦ Bl)(x) ≡ h̃l(Bl(x))

are convex functions.
In the next section, we find transformations for the radiobiological criterion

functions described in Section 2.2 and analyse the conditions under which the
transformed criteria are (strictly) convex.

Although the criterion functions have been cast as a function of the dose
distribution D, rather than as a function of the bixel weights w, the analysis is
conducted in terms of D. Formally, the objective functions Gk(D) and Gk(w) =
Gk(D(w)) = Gk(P · w) are different, but since D is a linear mapping of w, the
convexity properties of the functions remain invariant. This is due to the fact that the
composition of a convex function with an affine mapping is convex (see, e.g., Boyd &
Vandenberghe (2004, p. 79)). However, for Gk to be strictly convex with respect to
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w, the mapping P should be full rank (and thus have an empty nullspace). This can
be derived from the Hessian of Gk with respect to w:

∇2
wwGk(D(w)) = PT · ∇2

DDGk(D) · P,

and using proper statements of positive semidefiniteness from linear algebra. Using
the properties of positive (semi)definite symmetric products (see, e.g., Horn & Johnson
(1987, p. 399)) it can be shown that if ∇2

DDGk(D) is positive definite (and thus Gk is
strictly convex in D), and P is any particular dimensionally compatible matrix that
has an empty nullspace, then ∇2

wwGk(D(w)) is positive definite (and thus Gk is strictly
convex in w). It also follows that, if P is of compatible dimension but rank-deficient,
then ∇2

wwGk(D(w)) is positive semidefinite (and thus Gk is convex in w). Clearly,
this also holds for the constraint functions Cl. In practice, the dose grid is finer than
the bixel grid, i.e., M � N and thus P has full column rank (Carlsson 2008).

3.2. Convexity analysis of transformed radiobiological criterion functions

In general, convexity of a criterion function G : R
M �→ R can be analysed via different

approaches. A direct approach is to check the conditions on its Hessian, ∇2G. A
necessary and sufficient condition for convexity of G is that its Hessian is positive
semidefinite. Without proof, we state the conditions for convexity and concavity
more formally:

Definition 1. A matrix A ∈ R
M×M is positive (negative) semidefinite on a set S if

xT Ax ≥ (≤) 0 for all x ∈ S, and positive (negative) definite on S if xT Ax > (<) 0
for x = 0 and x ∈ S.

Lemma 1. A real-valued, twice differentiable function G is convex (concave) on a
set S if and only if its Hessian, ∇2G, is positive (negative) semidefinite on S. The
function G is strictly convex (concave) on the set S if and only if ∇2G is positive
(negative) definite on S.

An indirect approach is to exploit the rules of composition to deduce
convexity/concavity of differentiable functions by means of the chain rule. The
following composition rules for convexity and concavity can be derived (see, e.g. Boyd
& Vandenberghe (2004, p. 83−7)).

Lemma 2. Consider the functions F : R
p �→ R

q and h : R
q �→ R with their

composition G = h ◦ F : R
p �→ R, defined by

G(x) = h(F(x)) = h(F1(x), . . . , Fq(x)),

where Fi : R
p �→ R, p ≥ 1 and q ≥ 1. Then,

G is convex if h is convex and nondecreasing (nonincreasing) in each
argument, and Fi are convex (concave),

G is concave if h is concave and nondecreasing (nonincreasing) in each
argument, and Fi are concave (convex).

Depending on the mathematical form of the function, a transformation of the
radiobiological criteria functions presented in Section 2.2 is suggested, and one of
the two approaches is applied to analyse the convexity of the transformed criterion
functions.
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4. Results

4.1. TCP function using the LQ-Poisson cell survival model

The concavity of the logarithmically transformed linear-Poisson model-based TCP
function has been investigated by others (Choi & Deasy 2002, Romeijn et al. 2004).
These authors have applied the strictly increasing transformation h(z) = ln z to show
that the linear-Poisson-based TCP function is log-concave.

Here, the same transformation has been applied to the LQ-Poisson-based TCP
function of (2). In Appendix A we show that − ln TCPLQ(D) is strictly convex under
the condition that

Dk >

√
1
2

(α/β)n
α

− 1
2
(α/β)n. (13)

Since dose is a nonnegative quantity, constraint (13) is satisfied if α2n > 2β. In
the opposite case, where α2n < 2β, SFLQ(D) is sigmoidal for D ≥ 0, and its curvature
is only strictly positive if (13) is satisfied. For typical clinical values of α, α/β and
n, (e.g., for prostate cancer, α = 0.15 ± 0.04 Gy−1, α/β = 3.1 ± 0.5 Gy, n = 30,
(Wang, Guerrero & Li 2003)) the righthand side of (13) is negative, and therefore
− ln TCPLQ(D) is a strictly convex function. Consequently, ln TCPLQ(D) is a strictly
concave function.

4.2. TCP function using the linear-Poisson cell survival model

In case of either a large α/β ratio (i.e., β ≈ 0) or small dose inhomogeneities and a
dose-per-fraction close to the reference dose for which the underlying dose-response
model was derived, the LQ-Poisson-based TCP function of (2) reduces to the linear-
Poisson-based TCP model:

TCPL(D) = exp

[
−N0

N∑
k=1

vk e−αDk

]
. (14)

Others have shown that TCPL(D) is a log-concave function (Choi & Deasy 2002,
Romeijn et al. 2004).

In Appendix B we apply a concave and strictly increasing transformation of the
(already) convex function − ln TCPL(D) and show that it is still convex. In particular,
we conclude that the function ln(− ln TCPL(D)) is ’less convex’ than − ln TCPL(D).
Hence, the former double-logarithmic transformation will produce tighter bounds in
the piecewise linear approximation of the Pareto efficient frontier than the single-
logarithmic transformation of TCPL(D) (Siem, den Hertog & Hoffmann 2008).

4.3. Population-averaged TCP function using the LQ-Poisson cell survival model

Assuming that the inter-patient intrinsic radiosensitivity of a certain tumour
type is normally distributed over the population, we show in Appendix C that
− ln TCPpop(D) is strictly convex for the LQ-Poisson-based TCP function, provided
that the dose in each voxel satisfies the condition

Dk >

√[
1
2
(α/β)n

]2
+

1
2

(α/β)n
α

− 1
2
(α/β)n. (15)

For typical clinical values of α, α/β and n, the righthand side of (15) is a small positive
value, and thus the inequality is easily satisfied for tumours.
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In case the inter-patient radiosensitivity has a log-normal probability density
function, φ(α), the population-averaged LQ-Poisson-based TCP function is not
necessarily logarithmic concave since φ(α) is not logarithmic concave (Bagnoli &
Bergstrom 2005).

4.4. NTCP function using the Relative Seriality s-model

For both the (nonfractionation-corrected) gEUD-based reformulation of Lyman’s
phenomenological NTCP model (6) and the gEUD-based phenomenological NTCP
function due to Alber & Nusslin (2001), Romeijn et al. (2004) have proven convexity
under the strictly increasing transformation h(z) = − ln(1 − z).

Here, we apply the same transformation to the Relative Seriality s-model of (3),
and analyse its convexity properties. Since the Relative Seriality s-model can neither
be formulated as a function of EUD nor as a function of gEUD, application of the model
in multi-criteria optimisation of IMRT will yield a Pareto frontier that is different from
the two aforementioned gEUD-based NTCP models.

The result comprises two steps (see Appendix D). In Theorem 4 it is shown that
applying the strictly increasing transformation h(z) = − ln(1 − zs) to (3) yields a
strictly convex function for s ≥ 0. In Theorem 5, this result is used to prove that
− ln(1−NTCPRS(D)) is a strictly convex function, provided that 0 < s < 1. For most
normal tissues this condition is satisfied.

Note that − ln(1−NTCPRS(D)) is a ’more convex’ transformation of NTCPRS(D)
than − ln(1−NTCPRS(D)s). Therefore, the latter transformation is more efficient for
approximation of the Pareto efficient frontier than the former (Siem et al. 2008).
Nevertheless, the convexity of − ln(1−NTCPRS(D)) is used in the convexity analysis
of the composite NTCP function (11).

4.5. EUD function using the LQ-Poisson cell survival model

Note that EUDLQ(D) is concave if and only if its Hessian is negative semidefinite.
Unfortunately, the formulas for the second partial derivatives become so complex,
that we were unable to analytically derive conditions under which the Hessian is
negative semidefinite. Nevertheless, numerical evaluation of the Hessian for the two-
dimensional case D = (50 Gy, 40 Gy) with equally-sized voxel volumes and realistic
clinical values α = 0.30 Gy−1, α/β = 10 Gy, n = 30 showed that the determinant
of the 2 × 2 Hessian is negative, which implies that the Hessian is indefinite. Hence,
EUDLQ(D) is neither convex nor concave in this point. The same result is obtained for
other values of D. This contradicts the results of Bortfeld et al. (2008), although their
concavity criterion α2n > 2β is fulfilled. Our counter example requires the criterion
to be re-evaluated.

4.6. gEUBED function for normal tissues using the LQ-model

By noting that gEUBEDa(D) can be obtained from (7) via a simple vector
transformation, we prove that gEUBEDa(D) is convex for a ≥ 1 in Theorem 6 of
Appendix E.
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4.7. NTCP function using the fractionation-corrected LKB model

In a similar way Romeijn et al. (2004) applied the transformation h(z) = − ln(1 − z)
to the (nonfractionation-corrected) gEUD-based LKB model of (6), we apply it to
the (fractionation-corrected) gEUBED-based LKB model of (9). Using the result of
Section 4.6, we show in Theorem 7 of Appendix E that − ln(1 − NTCPLKB(D)) is a
convex function.

4.8. Composite TCP and NTCP functions

In Appendix F it is shown that − ln TCP(D) and − ln(1 − NTCP(D)) are convex
functions for the relevant fractionation-corrected dose-response models presented in
Section 2.2. This extends the results obtained by Romeijn et al. (2004) to include
TCP and NTCP models that incorporate fractionation effects.

4.9. Uncomplicated tumour control probability

Without proof, we echo the notion of Romeijn et al. (2004) that from Theorems 8 and 9
(see Appendix F) it immediately follows that − ln P 1

+(D) is a strictly convex function,
provided that the convexity conditions of the constituent TCP and NTCP functions
are satisfied. The analysis gets complicated when the transformation h(z) = − ln z is
applied to P 0

+(D). No guarantee for the convexity of − ln P 0
+(D) can be derived.

Whether this result also rules out convexity of − ln P δ
+(D) for 0 < δ < 1 remains

to be shown. Little impact of the δ value on P δ
+(D) has been reported (Kim &

Tomé 2006). Another argument would be that P 1
+(D) − P 0

+(D) = NTCP(D)[1 −
TCP(D)] is small in the optimum. Therefore, it seems reasonable to use P 1

+(D)
instead of P δ

+(D), since the former criterion is guaranteed to be log-concave.
Nevertheless, for biologically-based multi-criteria optimisation the more

elementary composite TCP and NTCP functions are preferred, since they do not
impose an a priori balance between them.

5. Discussion and conclusions

We have identified transformations of commonly used nonconvex radiobiological
treatment plan evaluation criteria that account for the dose-per-fraction effect and
analysed conditions under which the transformed criteria are convex functions that
do not change the set of Pareto efficient treatment plans of a multi-criteria FMO
problem. The dose-per-fraction effect is accounted for by exploiting the well-known
log-linear quadratic cell survival model that has often been applied in fractionated
radiotherapy. By using the transformations, we were able to reformulate clinically
relevant multi-criteria optimization problems being cast in terms of TCP and NTCP
endpoints as convex problems.

In contrast to the work conducted by Romeijn et al. (2004), our analysis comprised
radiobiological criteria that cannot be cast as a transformation of the elementary EUD
or gEUD functions. This implies that the treatment plan evaluation criteria analysed
in the current work are truly different from those that were analysed before. Therefore,
the criteria analysed will yield different Pareto efficient frontiers.

We have shown that the convexity conditions of transformed criterion functions
that are based on the mechanistic LQ-Poisson based dose-response model are directly
related to the form of the log-linear-quadratic cell survival function underlying it. In
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this respect, it should be mentioned that the log-linear cell survival model underlying
the criterion functions analysed by Romeijn et al. (2004) is a limit of the log-linear
quadratic model for either a large α/β ratio or for small dose inhomogeneities and a
dose-per-fraction close to the reference dose for which the dose-response model was
derived. Although Bortfeld et al. (2008) have claimed the LQ-Poisson-based EUD
function to be concave under certain conditions, we have provided a numerical counter
example that shows that this function is neither convex nor concave.

Another aspect that was introduced as an extension to the work of Romeijn et al.
(2004) is the type of transformation applied. Apart from being strictly increasing, we
have noticed that transformations of different quality exist. Certain transformations
exist that yield transformed criterion functions that are ’less convex’ than other
transformations. This is particularly useful for the approximation of the Pareto
efficient frontier by piecewise linear upper and lower bounds (Siem et al. 2008). These
authors have shown that if the criterion function is already convex, an increasing and
concave transformation yields a less convex function, for which tighter upper and lower
bounds can be obtained than for the original bounds of the Pareto efficient frontier
that is to be approximated. We note that for the transformed criteria analysed by
Romeijn et al. (2004) increasing and concave transformations may exist that are more
efficient.

Future research will address the application of convex biologically-based multi-
criteria optimisation to assess the effect of different radiobiological models on the
Pareto efficient frontier and associated dose distributions for a given treatment
technique (i.e., beam modality, beam energy, beam configuration, and machine
characteristics).
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Appendix A.

The following theorem shows that the log-transformed LQ-Poisson-based TCP
function is concave under certain conditions.

Theorem 1. Consider the function TCPLQ(D) of (2). Let h(z) = ln z, which is a
strictly increasing function. Then the composition

− h(TCPLQ(D)) = − lnTCPLQ(D) = N0

N∑
k=1

vk SFLQ(Dk) (A.1)

is a strictly convex function on the set of dose distributions

{D | Dk >

√
1
2

(α/β)n
α

− 1
2
(α/β)n, k = 1, . . . ,M}.

Proof. Since the nonnegative sum of strictly convex functions is strictly convex, it
suffices to prove that SFLQ(D) is strictly convex for − ln TCPLQ(D) to be strictly
convex. The curvature of SFLQ(D) is the second derivative with respect to D:

SF
′′
LQ(D) =

[
(α + 2βD/n)2 − 2β/n

]
SFLQ(D). (A.2)

From (A.2), it is easy to see that the curvature is strictly positive if

D >

√
1
2

(α/β)n
α

− 1
2
(α/β)n.

Appendix B.

The following theorem shows that ln(− ln TCPL(D)) is a convex function of D.

Theorem 2. Consider the function − lnTCPL(D) with TCPL(D) according to (14).
Let h(z) = ln z, which is a concave and strictly increasing function. Then the
composition

h(− lnTCPL(D)) = ln(− lnTCPL(D)) = lnN0+ln

(
N∑

k=1

vk e−αDk

)
(B.1)

is a convex function on the set of dose distributions {D | Dk ≥ 0, k = 1, . . . ,M}.
Proof. It is easy to verify that e−αD is a log-convex function of D. Since the
sum of log-convex functions is log-convex, ln

(∑N
k=1 vk e−αDk

)
is convex (Boyd &

Vandenberghe 2004, p. 105). Hence, ln(− ln TCPL(D)) is a convex function of D.
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Appendix C.

The following theorem shows that in case the inter-patient distribution of intrinsic
radiosensitivities is Gaussian the log-transformed population-averaged LQ-Poisson-
based TCP function is concave under certain conditions.

Theorem 3. Consider the function TCPpop(D) of (4). Let TCPind(D, α) =
TCPLQ(D, α) and let φ(α) be the standard normal probability density function.
Furthermore, let β be correlated to α by a constant value of α/β. Let h(z) = ln z,
which is a strictly increasing function. Then the composition

h(TCPpop(D)) = lnTCPpop(D) = ln
[∫ ∞

0

φ(α)TCPind(D, α)dα

]
,

is a strictly concave function on the set of dose distributions

{D | Dk >

√[
1
2
(α/β)n

]2
+

1
2

(α/β)n
α

− 1
2
(α/β)n, k = 1, . . . ,M}.

Proof. We use Theorem 6 from Prékopa (1973), which states that the function

F (D) =
∫

Iα

f(D, α)dα,

with Iα ⊆ R a convex set, is logarithmic concave in D if f(D, α) is a logarithmic
concave function of D and α. In our case, f(D, α) = φ(α)TCPind(D, α) and Iα = R+.
Note that

ln[φ(α)TCPind(D, α)] = lnφ(α) + ln TCPind(D, α).

It is easy to see that φ(α) is strictly logarithmic concave (see, e.g., Bagnoli & Bergstrom
(2005)). Since the nonnegative sum of strictly concave functions is strictly concave,
it remains to prove that ln TCPind(D, α) is a strictly concave function of D and α.
Note that since

− ln TCPind(D, α) = N0

N∑
k=1

vk SFLQ(Dk, α),

is separable in the doses to individual voxels, it suffices to show that SFLQ(D,α) is a
strictly convex function of D and α. Therefore, we analyse the Hessian of SFLQ(D,α):

∇2SFLQ(D,α) = SFLQ(D,α)
(

a b
b c

)
, (C.1)

with a = (α+2βD/n)2−2β/n, b = 2βD2/n+αD−1 and c = D2. The Hessian (C.1)
is positive definite if and only if a > 0 and its determinant, ac − b2, is positive. It is
easy to show that these two conditions are satisfied if

D >

√[
1
2
(α/β)n

]2
+

1
2

(α/β)n
α

− 1
2
(α/β)n.
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Appendix D.

The following theorem shows that − ln(1−NTCPRS(D)s) is a strictly convex function
on the set of physically meaningful dose distributions.

Theorem 4. Consider the function NTCPRS(D) of (3) with s ≥ 0. Let h(z) =
− ln(1 − zs), which is a strictly increasing function. Then the composition

h(NTCPRS(D)) = − ln(1 − NTCPRS(D)s)

= −
N∑

k=1

vk ln(1 − PLQ(Dk)s) (D.1)

is a strictly convex function on the set of dose distributions {D | Dk ≥ 0, k =
1, . . . ,M}.
Proof. Note that h(NTCPRS(D)) is separable in doses to individual voxels. Hence, it
suffices to show that g(D) = − ln(1−PLQ(D)s) is a strictly convex function of D. By
calculating the second derivative of g with respect to D, it can be shown that g′′(D)
is strictly positive if

(α + 2βD/n)2
(

sN0SFLQ(D)
1 − PLQ(D)s

− 1
)

+ 2β/n > 0. (D.2)

Note that the lefthand side of (D.2) can only be nonpositive if

sN0SFLQ(D) < 1 − PLQ(D)s. (D.3)

By substituting x = sN0SFLQ(D) and noting that PLQ(D)s = e−x, it follows that
(D.3) is equivalent with

x < 1 − e−x,

which is not true for x ∈ R. Hence, it follows that (D.2) holds for any D ≥ 0, which
implies that − ln(1 − NTCPRS(D)s) is a convex function.

The following theorem shows that − ln(1 − NTCPRS(D)) is a strictly convex
function of the dose distribution, provided that 0 < s < 1.

Theorem 5. Let F (D) = − ln(1 − NTCPRS(D)s) be the convex function from (D.1)
and let h(z) = − ln(1 − (1 − e−z)1/s). Then the composition

h(F (D)) = − ln(1 − NTCPRS(D))

is a strictly convex function on the set of dose distributions {D | Dk ≥ 0, k = 1, . . . , M}
if 0 < s < 1.

Proof. From Lemma 2 it is known that G(D) = h(F (D)) is convex if F is convex and
h is convex and nondecreasing. Therefore, we only have to prove that h is convex and
nondecreasing.

Let t = 1/s, with 0 < s < 1. Then t > 1. Differentiating h with respect to z
yields

h′(z) =
t(1 − e−z)t−1e−z

1 − (1 − e−z)t
.

Since 0 < NTCPRS(D) < 1, it follows that z > 0, from which it is easy to see that
h′(z) > 0 and thus h is nondecreasing.
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For the second derivative of h to be strictly positive, it can be derived that the
inequality

te−z − 1 + (1 − e−z)t > 0

should hold. By substituting x = e−z, and noting that 0 < x < 1, we obtain

p(x) = tx − 1 + (1 − x)t,

for which we have to show that p(x) > 0 for 0 < x < 1. Note that p(0) = 0 and that
the first derivative of p with respect to x is given by p′(x) = t(1 − (1 − x)t−1). Since
p′(x) > 0 for 0 < x < 1 and t > 1, p is an increasing function of x. From p(0) = 0 and
p′(x) > 0 for 0 < x < 1, it follows that p(x) > 0 for t > 1 on the interval 0 < x < 1,
which implies that h is strictly convex.

Using similar arguments, it can be shown that p(x) is negative for 0 < x < 1
in case s > 1, which implies that h is concave. However, this does not imply that
− ln(1−NTCPRS(D)) is not convex in D. Unfortunately, the composition rules cannot
be used to prove that − ln(1−NTCPRS(D)) is indeed a convex function, provided that
s > 1.

Appendix E.

The following theorem shows that gEUBEDa(D) is a convex function of the set of
physically meaningful dose distributions.

Theorem 6. The function gEUBEDa(D) of (8) is convex on the set of dose
distributions {D | Dk ≥ 0, k = 1, . . . ,M} for a ≥ 1.

Proof. From its definition, it is clear that (8) is obtained from (7) by a vector
transformation of its argument, i.e., gEUBEDa(D) = gEUDa(h(D)) with h(z) =
(h1(z), . . . , hN (z)) and hk(z) = BED(zk) = zk

(
1 + zk/n

α/β

)
, where k = 1, . . . , N . The

convexity of gEUBEDa(D) follows from the fact that for a ≥ 1 the function gEUDa(D)
is convex and nondecreasing in each argument (Choi & Deasy 2002), and hk are strictly
convex.

The following theorem shows that − ln(1−NTCPLKB(D)) is a convex function of
D.

Theorem 7. Consider the function NTCPLKB(D) of (9) with a ≥ 1. Let h(z) =
− ln(1 − z), which is a strictly increasing function. Then the composition

h(NTCPLKB(D)) = − ln(1 − NTCPLKB(D))

is a convex function on the set of dose distributions {D | Dk ≥ 0, k = 1, . . . ,M}.
Proof. Note that − ln(1 − NTCPLKB(D)) is a transformation of gEUBEDa(D):

− ln(1 − NTCPLKB(D)) = Ψ
(

gEUBEDa(D) − BED50

m BED50

)
,

where Ψ(t) = − ln(1−Φ(t)), and Φ(t) is the standard normal cumulative distribution
function. For Lemma 2 to be applicable, we use Theorem 6 and only have to show
that Ψ(t) is an increasing and convex function of t.
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Since h and Φ are strictly increasing functions, Ψ(t) is strictly increasing in t. To
investigate whether Ψ(t) is convex, the first derivative with respect to t is calculated:

Ψ′(t) =
Φ′(t)

1 − Φ(t)
.

From Bagnoli & Bergstrom (2005) it is known that if Φ′(t) is logarithmic concave,
Ψ′(t) is increasing. Note that it is easy to show that Φ′(t) is log-concave, since

ln(Φ′(t)) = ln
(

1√
2πσ

)
− 1

2

(
t − μ

σ

)2

is a parabola with strictly negative curvature. Since Ψ′(t) is increasing, the second
derivative of Ψ with respect to t is positive, which implies that Ψ(t) is convex.

Appendix F.

The following theorems show that the log-transformed composite TCP and NTCP
functions are concave and convex, respectively, on the set of physically meaningful
dose distributions for the relevant dose-response models defined in Section 2 of this
paper.

Theorem 8. Consider the function TCP(D) of (10), with TCPj(D) according to
TCPLQ(D) of (2). Let h(z) = ln z, which is a strictly increasing function. Then the
composition

−h(TCP(D)) = − lnTCP(D) = −
T∑

j=1

lnTCPj(D),

is a strictly convex function on the set of dose distributions

{D | Dk >

√
1
2

(α/β)n
α

− 1
2
(α/β)n, k = 1, . . . ,M}.

Proof. As shown in Theorem 1, the function − ln TCPLQ(D) is strictly convex if (13)
is satisfied. By noting that the nonnegative weighted sum of strictly convex functions
is strictly convex, it is evident that − ln TCP(D) is strictly convex in D.

Theorem 9. Consider the function NTCP(D) of (11) with NTCPj(D) according to
NTCPRS(D) of (3) or NTCPLKB(D) of (9). Let h(z) = − ln(1− z), which is a strictly
increasing function. Then the composition

h(NTCP(D)) = − ln(1 − NTCP(D)) = −
T∑

j=1

ξj ln(1 − NTCPj(D)),

is a strictly convex function on the set of dose distributions {D | Dk ≥ 0, k =
1, . . . ,M}.
Proof. According to Theorems 5 and 7, the functions − ln(1 − NTCPRS(D)) and
− ln(1 − NTCPLKB(D)) are strictly convex, respectively. By noting that the
nonnegative weighted sum of strictly convex functions is strictly convex, it is evident
that − ln(1 − NTCP(D)) is strictly convex in D.


