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Abstract

In the field of the Design and Analysis of Computer Experiments (DACE) meta-models

are used to approximate time-consuming simulations. These simulations often contain

simulation-model errors in the output variables. In the construction of meta-models, these

errors are often ignored. Simulation-model errors may be magnified by the meta-model.

Therefore, in this paper, we study the construction of Kriging models that are robust with

respect to simulation-model errors. We introduce a robustness criterion, to quantify the

robustness of a Kriging model. Based on this robustness criterion, two new methods to find

robust Kriging models are introduced. We illustrate these methods with the approximation

of the Six-hump camel back function and a real life example. Furthermore, we validate the

two methods by simulating artificial perturbations. Finally, we consider the influence of the

Design of Computer Experiments (DoCE) on the robustness of Kriging models.

Keywords: Kriging, robustness, simulation-model error

JEL Classification: C60.

1 Introduction

Kriging models were originally proposed and used in Geostatistics; see e.g. Cressie (1991). Later

on, Kriging models were more and more used in the design and analysis of computer experiments

(DACE). This trend was started by Sacks et al. (1989). Since then, many others followed; see

Van Beers and Kleijnen (2004), Jones et al. (1998), Jones (2001), Koehler and Owen (1996),

Santner et al. (2003), and Stehouwer and Den Hertog (1999). Nowadays, computer simulations

are frequently used to simulate products or processes; see e.g. Fu (2002). One can think

of technical products like televisions, mobile phones, laptops, etc. However, these computer

simulations can be very time-consuming, i.e., one simulation run may cost hours to run; see

e.g. Rommel and Shoemaker (2007). In DACE, Kriging models are used as meta-models to
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approximate time-consuming computer simulations. These meta-models are used for two main

purposes. First, they are used to gain more insight into the relationship between the output

variables and the input variables of computer simulations. Second, they are used for optimization

of the simulated system. Since many (nonlinear) optimization techniques need a lot of function

evaluations, the computer simulation model is not appropriate for this purpose. Therefore,

instead of the computer simulation model, the meta-model is optimized. Meta-models are also

called response surface models, compact models, surrogates, or emulators.

Computer simulations represent a mathematical model of a real-world phenomenon. There-

fore they may contain errors. These errors may be model errors, but also numerical errors. In

Stinstra and Den Hertog (2007) these kinds of errors in the computer simulation are referred to

as ’simulation-model errors’, and are defined as the difference between reality and the computer

simulation model. Even though simulation-model errors can become rather big, they are often

neglected. In Oden et al. (2006) it is stated that quantification of these simulation-model errors

will have ’a profound impact on the reliability and utility of simulation methods in the future’.

In constructing meta-models, we have to consider these simulation-model errors, since meta-

models can be sensitive to these errors. The meta-model, based on the incorrect data may

deviate a lot from the meta-model based on the correct data; e.g., an error of 5% in the data

may be ’magnified’ to 20% by the meta-model.

In this paper, we show through some examples that Kriging models may be non-robust with

respect to simulation-model errors. We introduce a robustness criterion to quantify the amount

of robustness of a Kriging model. We present two robust Kriging methods that are more robust

against simulation-model errors. These robust Kriging models are less sensitive to errors in

the output data, i.e., the difference between the Kriging models based on the correct and the

perturbed output data is kept as small as possible. If there is little uncertainty about the values

of the output data, we keep the deviation of the Kriging model with respect to the Kriging model

based on the correct data as small as possible. Another advantage of the new methods is that

the Kriging models become numerically more stable. We validate the methods by artificially

incorporating simulation-model errors in the output data. Finally, we also study the influence of

the Design of Computer Experiments (DoCE) on the robustness of Kriging models. It turns out

that space-filling designs are good designs with respect to the robustness of a Kriging model.

Until now, not so much research has been done yet on robust Kriging models. In Stinstra

and Den Hertog (2007), robust optimization of different kinds of meta-models is studied. They

consider robust optimization of meta-models with respect to simulation-model errors, meta-

model errors, and implementation errors. Note that in Stinstra and Den Hertog (2007) the goal

is to find a robust optimum using a classical and possibly non robust Kriging model, whereas in

this thesis, the goal is to find a robust meta-model. In Hawkins and Cressie (1984), a Kriging

method is proposed that is robust against outliers. In that paper, the data is edited before the

actual Kriging is carried out. In Mat́ıas and González-Manteiga (2003) a regularized Kriging

method is introduced, which performs well if the data contain outliers. In that paper, the MSE of

the predictor is decomposed into a variance part and a bias part and instead of the minimization

of the variance under an unbiasedness constraint, a linear combination between the variance part
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and the bias part is minimized. In Salazar Celis et al. (2007), rational models are constructed

that account for simulation-model errors by requiring the model to intersect vertical segments

through the output data. It is shown how this problem is reduced to a quadratic programming

problem with a convex objective function.

This paper is organized as follows. In Section 2 we summarize the theory on Kriging models.

In Section 3, we give examples of non-robust Kriging models, and introduce a robustness crite-

rion. In Section 4, we introduce two new methods to obtain robust Kriging models. In Section

5, we study the influence of different Designs of Computer Experiments on the robustness of

Kriging models. Finally, in Section 6 we present our conclusions and propose directions for

further research.

2 Kriging models

In this section we summarize some Kriging theory according to Sacks et al. (1989). The function

y : U 7→ R, with U ⊆ R
q that we want to approximate, is treated as a realization of a stochastic

process Y (x), where x denotes a q-dimensional input variable. This stochastic process is assumed

to consist of a regression part and a stochastic part:

Y (x) =

k
∑

j=0

βjfj(x) + Z(x), (1)

where k + 1 is the number of regression functions including f0(x) ≡ 1. Often, the regression

functions fj are left out except for f0(x), because they do not yield better Kriging models. The

stochastic part Z(x) is assumed to have zero mean and constant process variance (say) σ2. The

covariance between Z(w) and Z(x), with w, x ∈ U , is given by

V (w, x) = σ2R(w, x),

where R(w, x) denotes the correlation between Z(w) and Z(x). Given is a vector of com-

puter simulation input data [x1, . . . , xn]T and a vector of corresponding output data ys =

[y(x1), . . . , y(xn)]T . We assume ys is a realization of the stochastic vector Ys = [Y (x1), . . . , Y (xn)]T ,

defined by (1). Further, we assume a scalar output, as most of the Kriging literature does.

The Kriging model is given by the so-called Best Linear Unbiased Predictor (BLUP):

ŷ(x) = cT (x)ys.

It is called BLUP, because the weights c(x) are chosen such that they solve the following mini-

mization problem

min
c(x)

MSE[ŷ(x)] = E[cT (x)Ys − Y (x)]2

s.t. E[cT (x)Ys] = E[Y (x)].
(2)
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In other words, the MSE is minimized subject to the unbiasedness constraint.

Before we proceed, we introduce some further notation. We write

f(x) = [f0(x), . . . , fk(x)]T

for the k + 1 regression functions in (1), and

F =









fT (x1)
...

fT (xn)









for the values of these regression functions in the n design points. Furthermore, let R be the

correlation matrix with elements

Rij = R(xi, xj), for i = 1, . . . , n and j = 1, . . . , n,

i.e., Rij is the correlation between Z(xi) and Z(xj). Let

r(x) =
[

R(x1, x), . . . , R(xn, x)
]T

be the vector with correlations between Z(xi) and Z(x).

Classical Kriging assumes that c(x) is independent of the output data. Then we can rewrite

the optimization problem in (2) as (see Santner et al. (2003))

min
c(x)

MSE[ŷ(x)] = σ2[1 + cT (x)Rc(x) − 2cT (x)r(x)]

s.t. F T c(x) = f(x).
(3)

To solve (3), Lagrange multipliers λ(x) are used. This gives the following system of equations:

[

0 F T

F R

][

λ(x)

c(x)

]

=

[

f(x)

r(x)

]

. (4)

Solving this system of equations for c(x) and λ(x) gives

λ(x) = (F T R−1F )−1(F T R−1r(x) − f(x))

c(x) = R−1(r(x) − Fλ(x)),
(5)

which yields the Kriging predictor:

ŷ(x) = cT (x)ys

= fT (x)β̂ + rT (x)R−1(ys − Fβ̂),
(6)

where

β̂ = (F T R−1F )−1F T R−1ys (7)
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is the generalized least-squares (GLS) estimate of β in (1).

The MSE of the predictor – also known as the Kriging variance – becomes (see also Lophaven

et al. (2002)):

MSE[ŷ(x)] = σ2(1 + uT (x)(F T R−1F )−1u(x) − rT (x)R−1r(x)),

where u(x) = F T R−1r(x) − f(x).

Until now, we have not discussed the form of the correlation function R(w, x). Most publi-

cations assume that the correlation structure is stationary; i.e. R(w, x) = R(w − x). Usually a

parametric family of correlation functions is chosen. A popular choice is the exponential family

Rθ,p(w, x) =

q
∏

j=1

exp(−θj|wj − xj |pj), (8)

where, as noted earlier, q is the dimension of the input variable. In this thesis, we will mostly

use (8) with pj = 2, as done in Sacks et al. (1989); then (8) is called the Gaussian correlation

function.

Furthermore, we assume that the stochastic process Z(x) is Gaussian. Then, its log likeli-

hood is a function of the process variance σ2, the regression parameters β, and the correlation

parameters θ. The MLE β̂ of β equals the GLS estimator, and is given by (7); the MLE σ̂2 of

σ2 is given by

σ̂2 =
1

n
(ys − Fβ̂)T R−1(ys − Fβ̂).

To find the MLE θ̂ of θ, we should solve (see Sacks et al. (1989))

min
θ

|R|1/nσ̂2. (9)

Solving (9) is achieved by using some numerical optimization procedure; we use the Matlab

toolbox DACE provided by Lophaven et al. (2002).

3 A robustness criterion

We suppose that the output data are subject to simulation-model errors, i.e., instead of the exact

data y(x1), . . . , y(xn), we have perturbed data ỹi = y(xi) + εi
y, where εi

y is the perturbation of

the i-th data point y(xi). As a consequence, the Kriging model may deviate from the Kriging

model based on the correct data.

In Section 3.1, we give an example of a non-robust Kriging model. In Section 3.2, we

introduce the so-called rc-value which is a measure for the robustness of a Kriging model.

3.1 An example of a non-robust Kriging model

In this subsection we give an example which shows that Kriging models may be non-robust.
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Example 3.1

We consider the approximation of the so-called Six-hump camel back function; see Dixon and

Szego (1978). This function is defined as

f4(x1, x2) = x2
1(4 − 2.1x2

1 + x4
1/3) + x1x2 + x2

2(−4 + x2
2);

see also Figure 1. In Figure 2, a Kriging model based on the correct data, and a Kriging model
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Figure 1: Graph of f(x1, x2) = x2
1(4 − 2.1x2

1 + x4
1/3) + x1x2 + x2

2(−4 + x2
2).

based on perturbed data are shown, for n = 16 data points. We used Kriging models without

a regression part, i.e., in (1) we took f0(x) ≡ 1, and fj(x) = 0, for j ≥ 1. The locations of the

input data points are shown in Figure 3. The vector of perturbations is given by:

εy =[0.017,−0.018, 0.052,−0.024, 0.0053,−0.052, 0.021, 0.022,

− 0.084, 0.022,−0.0037, 0.013,−0.065,−0.024,−0.031, 0.12]T .

This vector is sampled from the uniform distribution on a hypersphere around 0 with radius 0.2.

For this vector it holds that ‖εy‖2 = 0.1893. The nominal output data values are given by

y =[3.9966, 2.0788, 0.5542, 3.5276, 1.7050, 0.9322,−0.8909,−0.7797,

− 0.0688, 0.9572, 1.8925, 0.5688, 1.9661, 2.2138, 5.7333, 1.2014]T .

In Figure 3, a contour plot of the absolute difference of both Kriging models in Figure 2 is shown.

It can be seen from this figure that deviations of about 0.7 are reached, which is a relatively

large number compared to the perturbations of the data εy. The maximal deviation is almost
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Figure 2: A nominal and perturbed Kriging model with ‖εy‖2 = 0.1893 and n = 16 in Example
3.1.

magnified 6 times with respect to the maximal value in the vector εy, and almost 4 times with

respect to ‖εy‖2.
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Figure 3: Absolute difference between the nominal and a perturbed Kriging model in Example
3.1.

Next, we consider the Kriging prediction of the point (−0.15, 0) based on these 16 data points.

In particular, we consider the Kriging weights c(x) of the predictor in this point. The Kriging

weights associated with the input data points are shown in Figure 4. The point (−0.15, 0) is

indicated by a ’+’. Note that there are two points that have relatively large weights, namely

-2 and 2.6. If the data points associated with these weights contain errors, these errors also

get relatively large weights. This means that an error in the output data in these points is

magnified by these large Kriging weights. Furthermore, it seems that it is not really necessary
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Figure 4: Kriging weights for the prediction of y(−0.15, 0) in Example 3.1.

for the weights to have such a size, because these weights cancel each other more or less. This

behavior typically occurs when two or more data points are relatively close to each other.

3.2 The rc-value

The example illustrated in Figure 4 suggests that the values of the Kriging weights c(x) play an

important role in the robustness of a Kriging model. The Kriging model based on the perturbed

data is given by:

ŷε(x) = cT (x)(ys + εy) = cT (x)ys + cT (x)εy . (10)

The perturbed Kriging predictor ŷε(x) will be least sensitive to simulation-model errors if the

values of c(x) are small. Note that in (10), we assume that c(x) is independent of the output

data ys, which is not the case in general. I.e., in standard Kriging analysis, output data ys would

result in a different c(x) than output data ys + εy. Note that this assumption is also made when

rewriting (2) into (3).

In practice, an estimate of the maximal simulation-model error is often available. Let εy be

the vector containing the perturbations εi
y. The errors could be inside a box: −ν ≤ εi

y ≤ ν,∀i =

1, . . . , n. The errors could also be inside a hyperellipse: ‖Aεy‖2, where A is an n×n-matrix, and

‖ · ‖2 the Euclidean norm. In particular, the errors could be inside a hypersphere: ‖εy‖2 ≤ ν.

Lemma 1. Suppose that the Euclidean norm of the simulation-model error vector εy of output

data is bounded by ν, i.e., ‖εy‖2 ≤ ν. Then

cT (x)εy ≤ ν‖c(x)‖2. (11)
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Proof. To determine the maximal value that cT (x)εy can attain, we solve the maximization

problem:

max
εy

cT (x)εy

s.t. εT
y εy ≤ ν2.

(12)

It is easy to verify that (12) has optimal value ν‖c(x)‖2, which implies that cT (x)εy ≤ ν‖c(x)‖2.

We may regard the righthand side of (11) as an approximation of the maximal deviation of

the nominal Kriging model. Therefore, we regard ‖c(x)‖2 as a robustness-criterion value (rc-

value) of a Kriging model. The larger the value of ‖c(x)‖2, the less robust the Kriging model

is. Note that in the data points we have that ‖c(x)‖2 = 1. Furthermore, if
∑n

i=1 ci(x) = 1 and

ci ≥ 0, then ‖c(x)‖ ≤ 1.

Next, we are interested in the deviation of the nominal Kriging model relative to the maximal

perturbation, ‖εy‖∞, i.e.,

cT (x)εy

‖εy‖∞
. (13)

Note that the maximum of maximization problem (12) is attained by the vector εy, with ‖εy‖2 =

ν, with the same direction of the vector c(x), i.e., the maximum is attained for

εy = ν
c(x)

‖c(x)‖2
.

Substituting this into (13), we obtain for the maximal deviation of the nominal Kriging model

relative to the maximal perturbation, which we call the rc-value:

rc-value = ν
cT (x)c(x)

‖c(x)‖2
· 1

ν

‖c(x)‖2

‖c(x)‖∞
=

‖c(x)‖2
2

‖c(x)‖∞
.

Note that the rc-value is a measure that quantifies the magnification factor by which the Kriging

model may magnify the maximal perturbation ‖εy‖∞. Furthermore, note that the relation

between the rc-value and the rc-value is given by:

rc-value =
‖c(x)‖2

‖c(x)‖∞
rc-value.

Example 3.2

In this example, we again consider the approximation of the Six-hump camel back function as

we also did in Example 3.1. We take the same n = 16 input data points. The location of the

input data points can be seen in Figure 5. We calculate the corresponding correct output values,

from which we fit a Kriging model. Then, we calculate the rc-value ‖c(x)‖2. The rc-value of this
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Kriging model is shown in Figure 5. Rc-values of more than ‖c(x)‖2 = 3 are reached. In Figure

6, the rc-value is shown. From this figure we can see that rc-values of 6 are reached. This means

that an error of (say) 5% may be magnified to 30%!
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Figure 5: Rc-value of the Kriging prediction of the Six-hump camel back function based on 16
data points in Example 3.2.

The example given in this section motivates the need for Kriging models that are more robust.

In Section 4, we shall describe two different methods to construct Robust Kriging models.

4 Robust Kriging models

The classical Kriging method minimizes the MSE of the predictor subject to an unbiasedness

constraint; see (3). In Section 3.2, we introduced the rc-value. We also want to make this

rc-value as small as possible. Hence, besides minimizing the MSE, we want to minimize the rc-

value. More mathematically, we are interested in solving the following bi-objective optimization

problem:

min
c(x)

{

E[cT (x)Ys − Y (x)]2, ‖c(x)‖2
2

}

s.t. E[cT (x)Ys] = E[Y (x)].
(14)

In this section, we use two well-known methods to solve this bi-objective optimization problem:

1. weighted sum method

2. ε-constraint method.
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Figure 6: rc-value of the Kriging prediction of the Six-hump camel back function based on 16
data points in Example 3.2.

We refer to Miettinen (1999) for an elaborate treatment of these methods.

In Section 4.1, we use the weighted sum method to solve (14). In Section 4.2, we solve (14)

by using the ε-constraint method. Both methods yield robust Kriging models. In Section 4.4,

we discuss the trade-off between the MSE and the rc-value. In Section 4.5, we validate the new

Kriging methods by artificially generating perturbations in the output data, and checking the

performance of the robust Kriging methods.

4.1 Weighted sum method

In the weighted sum method, a linear combination of the two objectives in (14) is optimized,

i.e., instead of (3), we solve

min
c(x)

σ2[1 + cT (x)Rc(x) − 2cT (x)r(x)] + ρcT (x)c(x)

s.t. F T c(x) = f(x),
(15)

where ρ is the weight we give to minimizing the rc-value. We can solve (15) by using Lagrange

multipliers λ(x). This gives the following linear system of equations (cf. (4))

[

0 F T

F R + ρ
σ2 I

][

λ(x)

c(x)

]

=

[

f(x)

r(x)

]

. (16)
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Solving this system of equations for c(x) and λ(x) gives (cf. (5))

λ(x) = (F T (R + ρ
σ2 I)−1F )−1(F T (R + ρ

σ2 I)−1r(x) − f(x))

c(x) = (R + ρ
σ2 I)−1(r(x) − Fλ(x)),

which yields the robust Kriging predictor (cf. (6)):

ỹ(x) = cT (x)ys

= fT (x)β̂ + rT (x)(R + ρ
σ2 I)−1(ys − Fβ̂),

(17)

where

β̂ = (F T (R +
ρ

σ2
I)−1F )−1F T (R +

ρ

σ2
I)−1ys. (18)

Note that the difference between the predictor in (17) and the predictor in (6) is that in (17)

instead of R, we have R + ρ
σ2 I, i.e., to the diagonal elements of R, ρ

σ2 is added. Note that this

implies that the resulting robust Kriging models are not interpolating. The choice of a suitable

value for ρ can be made by trial and error. After one choice for ρ the Kriging model (17) can be

build and the corresponding Kriging variance and rc-values can be calculated. Based on these

values one may decide to try a new value for ρ.

Example 4.1

In this example, we apply the weighted sum method to the approximation of the Six-hump

camel back function. We use the same dataset as in Examples 3.1 and 3.2. We select ρ = 0.05,

ρ = 0.15, and ρ = 0.3. The resulting rc-values can be seen in Figures 7, 8, and 9. These

examples show that, compared to the rc-value using classical Kriging, shown in Figure 5, the

rc-value can be reduced a lot. The rc-value before applying the weighted sum method reaches

values of more than 4.5. After applying the weighted sum method, it reaches values of at most

1.4 for ρ = 0.05, 1.05 for ρ = 0.15, and 1 for ρ = 0.3.

The Kriging predictor in (17) is similar to the predictor that is obtained in the literature,

when measurement errors are taken into account. Kriging models that consider measurement

errors can be found e.g. in Sacks et al. (1989), Santner et al. (2003), and Sasena et al. (2002).

In these papers, an extra term ε(x) is added to the model (1):

Y (x) =
k

∑

j=0

βjfj(x) + Z(x) + ε(x),

where ε(x) is a zero mean white noise process, and is independent of Z(x). The variance of ε(x)

is denoted by σ2
ε . For the MSE[ŷ(x)] (cf. the objective in (3)) the following is obtained:

MSE[ŷ(x)] = σ2[1 +
σ2

ε

σ2
+ cT (x)(R +

σ2
ε

σ2
I)c(x) − 2cT (x)r(x)].

12
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Figure 7: rc-value of the robust Kriging model, using the weighted sum method in Example 4.1
with ρ = 0.05.
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with ρ = 0.15.
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Figure 9: rc-value of the robust Kriging model, using the weighted sum method in Example 4.1
with ρ = 0.3.

Now the optimization problem

min
c(x)

σ2[1 + σ2
ε

σ2 + cT (x)(R + σ2
ε

σ2 I)c(x) − 2cT (x)r(x)]

s.t. F T c(x) = f(x),

has to be solved. Using Lagrange multipliers, exactly the same linear system of equations as

in (16) is obtained, if we use ρ = σ2
ε . In Sasena et al. (2002) the value of σ2

ε is estimated by

using the Maximum likelihood estimator. If we treat the simulation-model errors of black-box

functions as realizations from a white noise process, we can also estimate ρ = σ2
ε by using the

Maximum likelihood estimator.

Numerical properties

Another attractive aspect of our method is that the condition number of R improves. In Kriging,

this matrix R may become very badly conditioned. Since the inverse R−1 appears in the Kriging

predictor (6), this property may give numerical problems; see Sacks et al. (1989).

If λ is an eigenvalue of R, then µ = λ + ρ is an eigenvalue of R + ρI. Therefore, since R is

positive definite, R + ρI is also positive definite. Since both matrices are positive definite, its

singular values are equal to its eigenvalues. Therefore, the 2-norm condition number of both

matrices are κ2(R) = λmax/λmin and κ2(R+ρI) = µmax/µmin, respectively. It is straightforward
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to derive the following relationship between the condition numbers of R and R + ρI:

κ2(R + ρI) =
λminκ2(R) + ρ

λmin + ρ
.

Therefore, if ρ is large enough, it will substantially decrease κ2(R + ρI). Since λmin is usually

small, ρ does not need to be very large to improve the condition number. Therefore, by adding a

small number ρ on the diagonal of the correlation matrix R, numerical problems with R−1 may

be avoided. Ababou et al. (1994) study the condition numbers of covariance matrices based on

different correlation functions.

4.2 ε-constraint method

In the ε-constraint method, one of the objectives in (14) is optimized, whereas the other objective

is used as an extra constraint. Minimizing the MSE of the predictor and using the rc-value as

extra constraint, we obtain:

min
c(x)

σ2[1 + cT (x)Rc(x) − 2cT (x)r(x)]

s.t. F T c(x) = f(x)

cT (x)c(x) ≤ γ2,

(19)

where γ is the upper bound for the rc-value. The choice of γ2 can be made by the user, depending

on the amount of robustness he/she wants to reach since the value of γ is is an upper bound for

the rc-value. Clearly, (19) is an optimization problem with a quadratic objective. We cannot

solve (19) explicitly. We solve (19) by using the Karush-Kuhn-Tucker conditions.

Let µ(x) be the Lagrange multiplier associated with the inequality in (19). We distinguish

between two cases: µ(x) = 0 and µ(x) > 0. If µ(x) = 0, we get the same equations as in (4), and

the Kriging function becomes the same as in (6). If µ(x) > 0, we obtain the following system of

equations:

Rc(x) + µ(x)c(x) + Fλ(x) = r(x) (20)

F T c(x) = f(x) (21)

cT (x)c(x) = γ2. (22)

We can write c(x) and λ(x) as a function of µ(x) using (20) and (21):

λ(µ(x), x) = (F T (R + µ(x)I)−1F )−1(F T (R + µ(x)I)−1r(x) − f(x)) (23)

c(µ(x), x) = (R + µ(x)I)−1(r(x) − Fλ(µ(x), x)), (24)

where (24) can be obtained by solving (20) for c(x) and (23) by substituting (24) into (21) and

solving this for λ(x). Substituting λ(x) into c(x) and c(x) into (22), we obtain an equation with

only µ(x) as unknown variable. This equation can be solved numerically. The following lemma

helps solving (22).
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Lemma 2. The function G : (0,∞) → R defined by

Gx(µ) = cT (µ, x)c(µ, x), (25)

i.e., the left hand side of (22), is decreasing in µ.

Proof. For the sake of simplicity in notation, we do not explicitly show the dependence of x

in this proof. Since the associate Jacobian is nonsingular, it follows from the Implicit function

theorem that λ(µ) and c(µ) are differentiable with respect to µ. Differentiating (20) and (21)

to µ gives

Rc′(µ) + µc′(µ) + c(µ) + Fλ′(µ) = 0 (26)

F T c′(µ) = 0. (27)

Multiplying (26) by (c′)T (µ), we obtain

(c′)T (µ)Rc′(µ) + µ(c′)T (µ)c′(µ) + (c′)T (µ)c(µ) + (c′)T (µ)Fλ′(µ) = 0.

Using (27) and the fact that R + µI is positive definite, we obtain:

(c′)T (µ)c(µ) = −(c′)T (µ)(R + µI)c′(µ) ≤ 0.

This implies that (25) is decreasing in µ.

The result in Lemma 2 makes it easier to solve (22) numerically. We can solve (22) e.g. by

using bisection.

To solve (22) numerically, it is necessary to repeatedly calculate (R + µI)−1, for various

values of µ. The following lemma shows that this computation can be done efficiently.

Lemma 3. Let R ≻ 0 be a correlation matrix, and let µ > 0. Then we can write (R+µI)−1 as:

(R + µI)−1 = QΛ−1
µ QT ,

where Λ−1
µ = diag(1/(λR

1 + µ), . . . , 1/(λR
n + µ)) with λR

1 , . . . , λR
n the eigenvalues of R, and Q is

an orthogonal matrix containing the eigenvectors of R.

Proof. Note that since R is positive definite and µ > 0, R + µI is also positive definite. This

means that we can decompose R + µI as

R + µI = QΛµQT ,

where Q is an orthogonal matrix containing the eigenvectors of R + µI, and Λ contains the

eigenvalues of R + µI. Note that R + µI and R have the same set of eigenvectors. Furthermore,

the eigenvalues of R + µI are given by λR
1 + µ, . . . , λR

n + µ. Using this property, (R + µI)−1 is
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given by

(R + µI)−1 = QΛ−1
µ QT ,

where Λ−1
µ = diag(1/(λR

1 + µ), . . . , 1/(λR
n + µ)).

Using the result of Lemma 3, the calculation of (R + µI)−1 becomes a lot easier. Now, the

matrix Q has to be calculated only one time, and the matrix Λ−1
µ is very easy to calculate. Note

that in (23) and (24) the matrix (R + µI)−1 is multiplied on the righthand side by a vector, say

v. Then (R + µI)−1v = QΛ−1
µ QT v. The matrix vector multiplication QT v has to be calculated

only once. Since Λ−1
µ QT v is a matrix vector multiplication, and QΛ−1

µ QT v is also a matrix

vector multiplication, the calculations are much easier than calculating (R + µI)−1v by solving

a new linear system of equations, for every µ.

Note that also in the ε-constraint method, adding the number µ on the diagonal of R resulting

in R + µI gives a better condition number for R + µI.

Example 4.2

In this example we apply the ε-constraint method to the approximation of the Six-hump camel

back function, based on the same data as in Examples 3.1, 3.2, and 4.1. We use the ε-constraint

method with γ2 = 2. This choice is also made subjectively. The resulting rc-value can be seen in

Figure 10. The robustness measured by the rc-value is indeed smaller than
√

2 everywhere.
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Figure 10: rc-value of the robust Kriging model, using the ε-constraint method in Example 4.2.

Optimization problem (19) is not feasible for all values of γ2. The minimal value for γ2 in a
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certain input data point x, can be determined by solving the following problem:

γ2
min = min

c(x)
cT (x)c(x)

s.t. F T c(x) = f(x).

For the often used case that f(x) = 1 and F = en we have γ2
min = 1/n.

In using the ε-constraint method we can also reverse the roles of the MSE of the predictor

and the rc-value and minimize the rc-value and impose an upper bound on the MSE, i.e.,

min
c(x)

cT (x)c(x)

s.t. F T c(x) = f(x)

σ2[1 + cT (x)Rc(x) − 2cT (x)r(x)] ≤ τ2.

(28)

It is easy to verify that if the constraint on the MSE is not binding, the optimum of (28) will

be attained for c(x) = F (F T F )−1f(x). Note that the predictor is then exactly the same as the

regression model.

Weighted sum method versus ε-constraint method

The weighted sum method improves improves the robustness throughout the whole space and

also improves the numerical stability of the Kriging model. In the ε-constraint method the rc-

value is improved only in those places where the rc-value of the classical Kriging model exceeds

the value of γ. Also, the ε-constraint method improves the numerical stability only in the input

data points, where the robustness is improved. Furthermore, the ε-constraint method yields

interpolating Kriging models. A drawback of the weighted-sum method is that a good value for

ρ cannot be determined a priori. An advantage of the ε-constraint method is that the maximal

rc-value of the Kriging model can be chosen a priori. A drawback of the ε-constraint method is

that no explicit formula for the Kriging predictor is available.

4.3 Multiplicative perturbations

Until now we assumed that the perturbations in the output data ys are additive. In this section

we assume that the perturbations in the output data are multiplicative, i.e., instead of the

correct data y(x1), . . . , y(xn), we have perturbed data (1 + εi
y)y(xi). Then, instead of (10), we

obtain:

ŷε(x) = cT (x)(1 + εy)ys = cT (x)ys + cT (x)Ȳsεy, (29)

where Ȳs is a diagonal matrix with the elements of ys on its diagonal. Note that (29) is similar

to (10), but instead of cT (x), in (29), we have cT (x)Ȳs. All results for additive perturbations

also hold for multiplicative perturbations with Ȳsc(x) instead of c(x). The additive case is a

special case of the multiplicative case with Ȳs = I. We summarize the results briefly. First, we

can prove a similar result for the maximal deviation of the nominal Kriging model as in Lemma
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1.

Lemma 4. Suppose that the Euclidean norm of the vector of the multiplicative simulation-model

errors is bounded by ν, i.e., ‖εy‖2 ≤ ν. Then

cT Ȳsεy ≤ ν‖Ȳsc(x)‖2

Proof. The proof is similar to the proof of Lemma 1.

We now apply the weighted sum method and the ε-constraint method with ‖cT (x)Ȳs‖2 as

rc-value. Applying the weighted sum method, we obtain as Kriging predictor:

ỹ(x) = cT (x)ys

= fT (x)β̂ + rT (x)(R + ρ
σ2 Ȳ 2

s )−1(ys − Fβ̂),

where

β̂ = (F T (R +
ρ

σ2
Ȳ 2

s )−1F )−1F T (R +
ρ

σ2
Ȳ 2

s )−1ys.

Note that this is the same as (17) and (18), where I is replaced by Ȳ 2
s .

If we apply the ε-constraint method, we also obtain similar results as for the additive case.

Instead of (20), (21), and (22), we obtain:

Rc(x) + µ(x)Ȳ 2
s c(x) + Fλ(x) = r(x)

F T c(x) = f(x)

cT (x)Ȳ 2
s c(x) = γ2. (30)

Again, similarly to (23) and (24), c(x) and λ(x) can be written as a function of µ(x):

λ(µ(x), x) = (F T (R + µ(x)Ȳ 2
s )−1F )−1(F T (R + µ(x)Ȳ 2

s )−1r(x) − f(x))

c(µ(x), x) = (R + µ(x)Ȳ 2
s )−1(r(x) − Fλ(µ(x), x)).

We also have a similar result to Lemma 2:

Lemma 5. The function G : (0,∞) → R defined by

Gx(µ) = cT (µ, x)Ȳ 2
s c(µ, x),

i.e., the left hand side of (30), is decreasing in µ.

Proof. The proof is similar to the proof of Lemma 2.

4.4 Trade-off between MSE and rc-value

In Figure 11 a plot of the so-called Pareto curve for the prediction of the point (0.15, 0) is shown.

This Pareto curve is constructed by repeatedly solving (19) for different values of γ. Obviously,
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there is a trade-off between the MSE and the rc-value. There is much room for improving the rc-

value, without giving up a lot in the MSE, so it is really worthwhile, to improve the robustness.
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Figure 11: Pareto curve of the MSE against the rc-value for the point (−0.15, 0).

4.5 Assessing the robustness of a Kriging model by Monte Carlo simulation

When applying the weighted sum method or the ε-constraint method (to obtain robust Kriging

models), the Kriging weights c(x) are changed. Let us drop the assumption that the Kriging

weights c(x) are independent of the perturbations in the output εy. Let εc(x) be the perturbation

of the Kriging weights c(x) due to the perturbation in the output data εy. Furthermore, let

rc(x) be the change that is made in these weights by either the weighted sum method or the

ε-constraint method. Then the robust Kriging model ŷr(x) becomes (cf. (10)):

ŷr(x) = (c(x) + εc(x) + rc(x))T (ys + εy)

= cT (x)ys + (c(x) + εc(x) + rc(x))T εy + (εc(x) + rc(x))T ys. (31)

In the weighted sum method and the ε-constraint method the second term in (31), (c(x)+εc(x)+

rc(x))T εy, is made small by minimizing the rc-value or putting an upper bound to the rc-value

respectively. The third term is also small, since in both the weighted sum method and the ε-

constraint method also the MSE is minimized, which keeps the robust Kriging models accurate

to some extent. However, the more weight we put on minimizing the rc-value, the bigger rc(x)

can become, which shows the trade-off between accuracy and robustness mathematically.

The two robust Kriging methods introduced in the previous sections, do not take the third
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term of (31) into account. To check that our methods still make the Kriging models more robust,

we assess the robustness of a Kriging model in this section by simulating the perturbations εy,

using Monte Carlo simulation.

We simulate the perturbations εy, by sampling εy;j , for j = 1, . . . , N from a uniform distri-

bution on a hypersphere around 0 with radius ν. Based on these N perturbed datasets, we fit

N Kriging models and calculate the relative deviation

rd(x) =
1

ν
max

j=1,...,N
|ŷ(x) − yε

j (x)|,

where ŷ(x) is the nominal Kriging model, which is based on the correct data, and ŷε
j (x) is the

Kriging model based on the j-th perturbed dataset. Dividing by ν makes the value of the relative

deviation rd(x) comparable to the rc-value. This procedure is summarized in Algorithm 1.

Algorithm 1 Algorithm to calculate the relative deviation rd(x)

Fit a Kriging model ŷ(x) based on the correct data ys

FOR j = 1 to N
Sample εy;j from the uniform distribution on hypersphere around 0

with radius ν.
Fit Kriging model ŷε

j(x) based on perturbed data ỹs = ys + εy;j.

Calculate the absolute difference |ŷ(x) − ŷε
j (x)|.

ENDFOR

Calculate rd(x) =
1

ν
max

j=1,...,N
|ŷ(x) − yε

j (x)|.

Example 4.3

We again consider the Six-hump camel back function, again based on the same dataset as in the

Examples 3.1, 3.2, 4.1, and 4.2. We calculate the relative deviation rd(x) based on the classical

Kriging method, based on the weighted sum method with ρ = 0.15, and based on the ε-constraint

method with γ2 = 2. We perturb the data by randomly sampling perturbations εy;j for which

‖εy;j‖2 ≤ 0.2 with j = 1, . . . , 500. Applying Algorithm 1, we obtain the rd(x) shown in Figures

12 and 13. In Figure 12 it can be seen that in certain regions, the relative deviation rd(x) is

greater than the rc-value of Figure 5. This is a consequence of ignoring εc(x) in the calculation

of the rc-value. By using the classical Kriging method, the maximal relative deviation is 3.5. By

applying the weighted sum method, the maximal relative deviation is reduced to 2. By applying

the ε-constraint method, the relative deviation is especially reduced where the rc-values of the

classical Kriging model exceeds the value of
√

2.

Example 4.4 (Dialectric breakdown strength)

In this example, we consider the analysis of performance degradation data in accelerated tests.

The dataset is given in Table 1. The output variable y is the dialectric breakdown strength

in kilo-Volts, and the input variables x1 and x2 are the time in weeks and the temperature in

degrees Celcius. See Nelson (1981) for more about information on this data.

We calculate the relative deviation rd(x) based on the classical Kriging method, the weighted

sum method with ρ = 0.69, and the ε-constraint method with γ2 = 2. We perturb the data

21



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

relative deviation

0.5

1

1

1

1

1

1
1

1

1

1

1

1 1

1

1

1

1

1

1.5

1.5

1.5

1.5

1.5

1.5

1.5

1.5 1.5

2

2

2

2

2

2

2.5
2.5

2.5

2.5

3

33.53.5

Figure 12: Relative deviation of classical Kriging model of the Six-hump camel back function in
Example 4.3.
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(b) ε-constraint method

Figure 13: Relative deviation of the robust Kriging models of the Six-hump camel back function
in Example 4.3.
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x1 x2 y

1 225 15.0
1 250 12.5
1 180 15.5
2 225 13.0
2 250 12.0
2 180 14.0
4 225 12.5
4 250 13.0
4 180 17.5
16 225 12.5
16 250 12.0
16 180 17.0
32 180 13.0
32 225 11.0
32 250 10.5

Table 1: Performance degradation data.

by randomly sampling perturbations εy;j for which ‖εy;j‖2 ≤ 2 for j = 1, . . . , 500. Applying

Algorithm 1, we obtain the rd(x) shown in Figures 14 and 15. These plots show that the

relative deviation rd(x) decreased after applying both robust Kriging methods. The classical

Kriging method gives a maximal relative deviation of 3.5. The weighted sum method reduces

the maximal relative deviation to 1.4. The ε-constraint method reduces the maximal relative

deviation to 1.8.

Examples 4.3 and 4.4 show that the robust Kriging methods introduced in Section 4 indeed

improve the robustness of Kriging models.

5 Influence of DoCE on robustness

The Design of Computer Experiments (DoCE) also influences the robustness of a Kriging model.

In Kleijnen et al. (2005), an overview of designing simulation experiments is given. The following

example compares the robustness of a Latin Hypercube Sample (LHS) (see McKay et al. (1979))

with a maximin Latin Hypercube design (LHD) (see Van Dam et al. (2007)), and a maximin

design (see Szabó et al. (2007)). All three designs have 30 input data points.

By definition, in an LHS, the interval of every dimension is divided into subintervals of equal

length, and for every subinterval, a design point is drawn from a uniform distribution on that

subinterval. The points for each dimension are combined randomly. In a maximin LHD, every

dimension is divided into an equal number of levels. The data points are placed on the levels

such that in every dimension, there is a data point on every level, and such that the minimal

distance between the data points is maximized. In a maximin design the data points are placed

such that the minimal distance between the data points is maximized.
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Figure 14: Relative deviation of classical Kriging model of the performance degradation data in
Example 4.4.
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Figure 15: Relative deviation of the robust Kriging models of the performance degradation data
in Example 4.4.
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Example 5.1

In this example, we compare the rc-values of Kriging models of the six-hump camel back function

based on an LHS, a maximin LHD, and a maximin design. We fix the number of design points

at 30. The designs as well as the resulting rc-values are shown in Figure 16.
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Figure 16: rc-value for LHS (a), maximin LHD (b), and maximin design (c) for Six-hump camel
back function in Example 5.1.

These figures show that the rc-values associated with the LHS are much larger than the

rc-values associated with the maximin LHD and the maximin design. For the LHS the rc-value

reaches 18, however, for the maximin LHD and the maximin design the rc-value reaches only 2

and 1.3 respectively. We obtained similar results for other sizes of datasets. Note that for the

LHS, the rc-values are very large in a region where there are relatively few data points. For

the maximin LHD, only at the boundary of the region the rc-values are relatively large. The

rc-values are the smallest for the maximin design.

Example 5.1 suggests that to obtain a robust Kriging model, the input data points should

be spread as regularly as possible over the input design space.

In sequential optimization, input data points are added iteratively. This strategy is expected
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to converge to the optimum of the computer simulation function; see e.g. Jones (2001). Hence,

data points will be clustered in a region around the optimum. Therefore we cannot expect the

data to be spread regularly over the input design space. Especially if the Kriging models are

fitted globally, i.e., based on all data points, this may result in non robust Kriging models.

If sequential designs are used for sensitivity analysis, as done in Kleijnen and Van Beers

(2004), the data points may also cluster. However, it is expected that the amount of clustering

is less than in case of sequential optimization.

6 Conclusions and further research

Kriging models may be not so robust against simulation-model errors. An error in the output

data may be magnified a lot by the Kriging model. We introduced a measure of robustness for

Kriging models, the so-called rc-value. This value can also be seen as a quality measure. Robust

Kriging models can be obtained by using the rc-value as a criterion. Such robust Kriging models

can be obtained by using the weighted-sum method and the ε-constraint method. The choice of

Design of Computer Experiments (DoCE) may have a big impact on the robustness of Kriging

models. The more space-filling the DoCE is, the smaller the rc-values are.

For further research we propose to extend our methods to robust Polynomials, Rational func-

tions, and robust Radial Basis Functions. For polynomial interpolation, the so-called Lebesgue

constant is comparable to the rc-value. Furthermore, it would be interesting to do more research

on the the influence of the DoCE on the robustness of Kriging models. From Section 5, it fol-

lows that the more space-filling the design is, the smaller the rc-values are, and the more robust

the Kriging model will be. Data balancing could be a solution to obtain more robust Kriging

models. Data balancing involves leaving out data points, to obtain better models.
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