852 research outputs found
Fiber-diffraction Interferometer using Coherent Fiber Optic Taper
We present a fiber-diffraction interferometer using a coherent fiber optic
taper for optical testing in an uncontrolled environment. We use a coherent
fiber optic taper and a single-mode fiber having thermally-expanded core. Part
of the measurement wave coming from a test target is condensed through a fiber
optic taper and spatially filtered from a single-mode fiber to be reference
wave. Vibration of the cavity between the target and the interferometer probe
is common to both reference and measurement waves, thus the interference fringe
is stabilized in an optical way. Generation of the reference wave is stable
even with the target movement. Focus shift of the input measurement wave is
desensitized by a coherent fiber optic taper
Head Impact Magnitude in American High School Football
OBJECTIVES: To describe determinants of head impact magnitudes between various play aspects in high school football.
METHODS: Thirty-two high school American football players wore Head Impact Telemetry System instrumented helmets to capture head impact magnitude (linear acceleration, rotational acceleration, and Head Impact Technology severity profile [HITsp]). We captured and analyzed video from 13 games (n = 3888 viewable head impacts) to determine the following play aspects: quarter, impact cause, play type, closing distance, double head impact, player's stance, player's action, direction of gaze, athletic readiness, level of anticipation, player stationary, ball possession, receiving ball, and snapping ball. We conducted random intercepts general linear mixed models to assess the differences in head impact magnitude between play aspects (α = 0.05).
RESULTS: The following aspects resulted in greater head impact magnitude: impacts during the second quarter (HITsp: P = .03); contact with another player (linear, rotational, HITsp: P < .001); initial head impact when the head is struck twice (linear, rotational, HITsp: P < .001); longer closing distances, especially when combined with a 3-point stance or when being struck in the head (linear: P = .03); the 2-point stance (linear, rotational, HITsp: P < .001); and offensive linemen not snapping the ball compared with those snapping the ball (rotational: P = .02, HITsp: P = .02).
CONCLUSIONS: Preventing head impacts caused by contact with another player may reduce head impact magnitude in high school football. Rule or coaching changes that reduce collisions after long closing distances, especially when combined with the 3-point stance or when a player is being struck in the head, should be considered
Alice: The Rosetta Ultraviolet Imaging Spectrograph
We describe the design, performance and scientific objectives of the
NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet
rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging
spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will
be the first UV spectrograph to study a comet at close range. It is designed to
obtain spatially-resolved spectra of Rosetta mission targets in the 700-2050 A
spectral band with a spectral resolution between 8 A and 12 A for extended
sources that fill its ~0.05 deg x 6.0 deg field-of-view. ALICE employs an
off-axis telescope feeding a 0.15-m normal incidence Rowland circle
spectrograph with a concave holographic reflection grating. The imaging
microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr
and CsI) and employs a 2 D delay-line readout array. The instrument is
controlled by an internal microprocessor. During the prime Rosetta mission,
ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus,
and the nucleus/coma coupling; during cruise to the comet, ALICE will make
observations of the mission's two asteroid flyby targets and of Mars, its
moons, and of Earth's moon. ALICE has already successfully completed the
in-flight commissioning phase and is operating normally in flight. It has been
characterized in flight with stellar flux calibrations, observations of the
Moon during the first Earth fly-by, and observations of comet Linear T7 in 2004
and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing
campaignComment: 11 pages, 7 figure
Tema Con Variazioni: Quantum Channel Capacity
Channel capacity describes the size of the nearly ideal channels, which can
be obtained from many uses of a given channel, using an optimal error
correcting code. In this paper we collect and compare minor and major
variations in the mathematically precise statements of this idea which have
been put forward in the literature. We show that all the variations considered
lead to equivalent capacity definitions. In particular, it makes no difference
whether one requires mean or maximal errors to go to zero, and it makes no
difference whether errors are required to vanish for any sequence of block
sizes compatible with the rate, or only for one infinite sequence.Comment: 32 pages, uses iopart.cl
Large-Amplitude Ultraviolet Variations in the RR Lyrae Star ROTSE-I J143753.84+345924.8
The NASA Galaxy Evolution Explorer (GALEX) satellite has obtained
simultaneous near and far ultraviolet light curves of the ROTSE-I Catalog RR
Lyrae ab-type variable star J143753.84+345924.8. A series of 38 GALEX Deep
Imaging Survey observations well distributed in phase within the star's
0.56432d period shows an AB=4.9mag variation in the far UV (1350-1750A) band
and an AB=1.8mag variation in the near UV (1750-2750A) band, compared with only
a 0.8mag variation in the broad, unfiltered ROTSE-I (4500-10000A) band. These
GALEX UV observations are the first to reveal a large RR Lyrae amplitude
variation at wavelengths below 1800A. We compare the GALEX and ROTSE-I
observations to predictions made by recent Kurucz stellar atmosphere models. We
use published physical parameters for the comparable period (0.57433d),
well-observed RR Lyrae star WY Antliae to compute predicted FUV, NUV, and
ROTSE-I light curves for J143753.84+345924.8. The observed light curves agree
with the Kurucz predictions for [Fe/H]=-1.25 to within AB=0.2mag in the GALEX
NUV and ROTSE-I bands, and within 0.5mag in the FUV. At all metallicities
between solar and one hundredth solar, the Kurucz models predict 6-8mag of
variation at wavelengths between 1000-1700A. Other variable stars with similar
temperature variations, such as Cepheids, should also have large-amplitude FUV
light curves, observable during the ongoing GALEX imaging surveys.Comment: This paper will be published as part of the Galaxy Evolution Explorer
(GALEX) Astrophysical Journal Letters Special Issue. Links to the full set of
papers will be available at http:/www.galex.caltech.edu/PUBLICATIONS after
November 22, 200
Random walks - a sequential approach
In this paper sequential monitoring schemes to detect nonparametric drifts
are studied for the random walk case. The procedure is based on a kernel
smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson
estimator and its as- sociated sequential partial sum process under
non-standard sampling. The asymptotic behavior differs substantially from the
stationary situation, if there is a unit root (random walk component). To
obtain meaningful asymptotic results we consider local nonpara- metric
alternatives for the drift component. It turns out that the rate of convergence
at which the drift vanishes determines whether the asymptotic properties of the
monitoring procedure are determined by a deterministic or random function.
Further, we provide a theoretical result about the optimal kernel for a given
alternative
GALEX UV Spectroscopy and Deep Imaging of LIRGs in the ELAIS S1 field
The ELAIS S1 field was observed by GALEX in both its Wide Spectroscopic and
Deep Imaging Survey modes. This field was previously observed by the Infrared
Space Observatory and we made use of the catalogue of multi-wavelength data
published by the ELAIS consortium to select galaxies common to the two samples.
Among the 959 objects with GALEX spectroscopy, 88 are present in the ELAIS
catalog and 19 are galaxies with an optical spectroscopic redshift. The
distribution of redshifts covers the range . The selected galaxies
have bolometric IR luminosities (deduced from the flux using ISOCAM) which means that we cover a wide range of galaxies from
normal to Ultra Luminous IR Galaxies. The mean () UV luminosity (not
corrected for extinction) amounts to
L_\sun for the low-z () sample. The UV slope (assuming
) correlates with the GALEX FUV-NUV color if
the sample is restricted to galaxies below . Taking advantage of the
UV and IR data, we estimate the dust attenuation from the IR/UV ratio and
compare it to the UV slope . We find that it is not possible to uniquely
estimate the dust attenuation from for our sample of galaxies. These
galaxies are highly extinguished with a median value .
Once the dust correction applied, the UV- and IR-based SFRs correlate. For the
closest galaxy with the best quality spectrum, we see a feature consistent with
being produced by a bump near 220nm in the attenuation curve.Comment: This paper has been published as part of the GALEX ApJL Special Issue
(ApJ 619, L63
SN 2009kf : a UV bright type IIP supernova discovered with Pan-STARRS 1 and GALEX
We present photometric and spectroscopic observations of a luminous type IIP
Supernova 2009kf discovered by the Pan-STARRS 1 (PS1) survey and detected also
by GALEX. The SN shows a plateau in its optical and bolometric light curves,
lasting approximately 70 days in the rest frame, with absolute magnitude of M_V
= -18.4 mag. The P-Cygni profiles of hydrogen indicate expansion velocities of
9000km/s at 61 days after discovery which is extremely high for a type IIP SN.
SN 2009kf is also remarkably bright in the near-ultraviolet (NUV) and shows a
slow evolution 10-20 days after optical discovery. The NUV and optical
luminosity at these epochs can be modelled with a black-body with a hot
effective temperature (T ~16,000 K) and a large radius (R ~1x10^{15} cm). The
bright bolometric and NUV luminosity, the lightcurve peak and plateau duration,
the high velocities and temperatures suggest that 2009kf is a type IIP SN
powered by a larger than normal explosion energy. Recently discovered high-z
SNe (0.7 < z < 2.3) have been assumed to be IIn SNe, with the bright UV
luminosities due to the interaction of SN ejecta with a dense circumstellar
medium (CSM). UV bright SNe similar to SN 2009kf could also account for these
high-z events, and its absolute magnitude M_NUV = -21.5 +/- 0.5 mag suggests
such SNe could be discovered out to z ~2.5 in the PS1 survey.Comment: Accepted for publication in APJ
The GALEX UV luminosity function of the cluster of galaxies Abell 1367
We present the GALEX NUV (2310 A) and FUV (1530 A) galaxy luminosity
functions of the nearby cluster of galaxies A1367 in the magnitude range -20.3<
M_AB < -13.3. The luminosity functions are consistent with previous (~ 2 mag
shallower) estimates based on the FOCA and FAUST experiments, but display a
steeper faint-end slope than the GALEX luminosity function for local field
galaxies. Using spectro-photometric optical data we select out star-forming
systems from quiescent galaxies and study their separate contributions to the
cluster luminosity function. We find that the UV luminosity function of cluster
star-forming galaxies is consistent with the field. The difference between the
cluster and field LF is entirely due to the contribution at low luminosities
(M_AB >-16 mag) of non star-forming, early-type galaxies that are significantly
over dense in clusters.Comment: 4 pages, 4 figures, 1 table. Accepted for publication in
Astrophysical Journal Letter
- …