61 research outputs found

    TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation

    Get PDF
    The discovery of hydroxymethyl-,formyl- and carboxylcytosine, generated through oxidation of methylcytosine by TET dioxygenases, raised the question how these modifications contribute to epigenetic regulation. As they are subjected to complex regulation in vivo, we dissected links to gene expression with in vitro modified reporter constructs. We used an Oct4 promoter-driven reporter gene and demonstrated that in vitro methylation causes gene silencing while subsequent oxidation with purified catalytic domain of TET1 leads to gene reactivation. To identify proteins involved in this pathway we screened for TET interacting factors and identified TDG, PARP1, XRCC1 and LIG3 that are involved in base-excision repair. Knockout and rescue experiments demonstrated that gene reactivation depended on the glycosylase TDG, but not MBD4, while NEIL1, 2 and 3 could partially rescue the loss of TDG. These results clearly show that oxidation of methylcytosine by TET dioxygenases and subsequent removal by TDG or NEIL glycosylases and the BER pathway results in reactivation of epigenetically silenced genes

    TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation

    Get PDF
    The discovery of hydroxymethyl-,formyl- and carboxylcytosine, generated through oxidation of methylcytosine by TET dioxygenases, raised the question how these modifications contribute to epigenetic regulation. As they are subjected to complex regulation in vivo, we dissected links to gene expression with in vitro modified reporter constructs. We used an Oct4 promoter-driven reporter gene and demonstrated that in vitro methylation causes gene silencing while subsequent oxidation with purified catalytic domain of TET1 leads to gene reactivation. To identify proteins involved in this pathway we screened for TET interacting factors and identified TDG, PARP1, XRCC1 and LIG3 that are involved in base-excision repair. Knockout and rescue experiments demonstrated that gene reactivation depended on the glycosylase TDG, but not MBD4, while NEIL1, 2 and 3 could partially rescue the loss of TDG. These results clearly show that oxidation of methylcytosine by TET dioxygenases and subsequent removal by TDG or NEIL glycosylases and the BER pathway results in reactivation of epigenetically silenced genes

    Plant-Based Diets Are Associated With Lower Adiposity Levels Among Hispanic/Latino Adults in the Adventist Multi-Ethnic Nutrition (AMEN) Study

    Get PDF
    Background: The Hispanic/Latino population in the US is experiencing high rates of obesity and cardio-metabolic disease that may be attributable to a nutrition transition away from traditional diets emphasizing whole plant foods. In the US, plant-based diets have been shown to be effective in preventing and controlling obesity and cardio-metabolic disease in large samples of primarily non-Hispanic subjects. Studying this association in US Hispanic/Latinos could inform culturally tailored interventions.Objective: To examine whether the plant-based diet pattern that is frequently followed by Hispanic/Latino Seventh-day Adventists is associated with lower levels of adiposity and adiposity-related biomarkers.Methods: The Adventist Multiethnic Nutrition Study (AMEN) enrolled 74 Seventh-day Adventists from five Hispanic/Latino churches within a 20 mile radius of Loma Linda, CA into a cross-sectional study of diet (24 h recalls, surveys) and health (anthropometrics and biomarkers).Results: Vegetarian diet patterns (Vegan, Lacto-ovo vegetarian, Pesco-vegetarian) were associated with significantly lower BMI (24.5 kg/m2 vs. 27.9 kg/m2, p = 0.006), waist circumference (34.8 in vs. 37.5 in, p = 0.01), and fat mass (18.3 kg vs. 23.9 kg, p = 0.007), as compared to non-vegetarians. Adiposity was positively associated with pro-inflammatory cytokines (Interleukin-6) in this sample, but adjusting for this effect did not alter the associations with vegetarian diet.Conclusions: Plant-based eating as practiced by US-based Hispanic/Latino Seventh-day Adventists is associated with BMI in the recommended range. Further work is needed to characterize this type of diet for use in obesity-related interventions among Hispanic/Latinos in the US

    A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance.

    Get PDF
    K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro, is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives

    Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges

    Get PDF
    Marine sponges are well known for their associations with highly diverse, yet very specific and often highly similar microbiota. The aim of this study was to identify potential bacterial sub-populations in relation to sponge phylogeny and sampling sites and to define the core bacterial community. 16S ribosomal RNA gene amplicon pyrosequencing was applied to 32 sponge species from eight locations around the world's oceans, thereby generating 2567 operational taxonomic units (OTUs at the 97% sequence similarity level) in total and up to 364 different OTUs per sponge species. The taxonomic richness detected in this study comprised 25 bacterial phyla with Proteobacteria, Chloroflexi and Poribacteria being most diverse in sponges. Among these phyla were nine candidate phyla, six of them found for the first time in sponges. Similarity comparison of bacterial communities revealed no correlation with host phylogeny but a tropical sub-population in that tropical sponges have more similar bacterial communities to each other than to subtropical sponges. A minimal core bacterial community consisting of very few OTUs (97%, 95% and 90%) was found. These microbes have a global distribution and are probably acquired via environmental transmission. In contrast, a large species-specific bacterial community was detected, which is represented by OTUs present in only a single sponge species. The species-specific bacterial community is probably mainly vertically transmitted. It is proposed that different sponges contain different bacterial species, however, these bacteria are still closely related to each other explaining the observed similarity of bacterial communities in sponges in this and previous studies. This global analysis represents the most comprehensive study of bacterial symbionts in sponges to date and provides novel insights into the complex structure of these unique associations

    Neurochemical Architecture of the Central Complex Related to Its Function in the Control of Grasshopper Acoustic Communication

    Get PDF
    The central complex selects and coordinates the species- and situation-specific song production in acoustically communicating grasshoppers. Control of sound production is mediated by several neurotransmitters and modulators, their receptors and intracellular signaling pathways. It has previously been shown that muscarinic cholinergic excitation in the central complex promotes sound production whereas both GABA and nitric oxide/cyclic GMP signaling suppress its performance. The present immunocytochemical and pharmacological study investigates the question whether GABA and nitric oxide mediate inhibition of sound production independently. Muscarinic ACh receptors are expressed by columnar output neurons of the central complex that innervate the lower division of the central body and terminate in the lateral accessory lobes. GABAergic tangential neurons that innervate the lower division of the central body arborize in close proximity of columnar neurons and thus may directly inhibit these central complex output neurons. A subset of these GABAergic tangential neurons accumulates cyclic GMP following the release of nitric oxide from neurites in the upper division of the central body. While sound production stimulated by muscarine injection into the central complex is suppressed by co-application of sodium nitroprusside, picrotoxin-stimulated singing was not affected by co-application of this nitric oxide donor, indicating that nitric oxide mediated inhibition requires functional GABA signaling. Hence, grasshopper sound production is controlled by processing of information in the lower division of the central body which is subject to modulation by nitric oxide released from neurons in the upper division

    Synthetic biology to access and expand nature's chemical diversity

    Get PDF
    Bacterial genomes encode the biosynthetic potential to produce hundreds of thousands of complex molecules with diverse applications, from medicine to agriculture and materials. Accessing these natural products promises to reinvigorate drug discovery pipelines and provide novel routes to synthesize complex chemicals. The pathways leading to the production of these molecules often comprise dozens of genes spanning large areas of the genome and are controlled by complex regulatory networks with some of the most interesting molecules being produced by non-model organisms. In this Review, we discuss how advances in synthetic biology — including novel DNA construction technologies, the use of genetic parts for the precise control of expression and for synthetic regulatory circuits — and multiplexed genome engineering can be used to optimize the design and synthesis of pathways that produce natural products

    UCT943, a next generation Plasmodium falciparum PI4K inhibitor preclinical candidate for the treatment of malaria

    Get PDF
    The 2-aminopyridine MMV048 was the first drug candidate inhibiting; Plasmodium; phosphatidylinositol 4-kinase (PI4K), a novel drug target for malaria, to enter clinical development. In an effort to identify the next generation of PI4K inhibitors, the series was optimized to improve properties such as solubility and antiplasmodial potency across the parasite life cycle, leading to the 2-aminopyrazine UCT943. The compound displayed higher asexual blood stage, transmission-blocking, and liver stage activities than MMV048 and was more potent against resistant; Plasmodium falciparum; and; Plasmodium vivax; clinical isolates. Excellent; in vitro; antiplasmodial activity translated into high efficacy in; Plasmodium berghei; and humanized; P. falciparum; NOD-; scid IL-2R; γ; null; mouse models. The high passive permeability and high aqueous solubility of UCT943, combined with low to moderate; in vivo; intrinsic clearance, resulted in sustained exposure and high bioavailability in preclinical species. In addition, the predicted human dose for a curative single administration using monkey and dog pharmacokinetics was low, ranging from 50 to 80 mg. As a next-generation; Plasmodium; PI4K inhibitor, UCT943, based on the combined preclinical data, has the potential to form part of a single-exposure radical cure and prophylaxis (SERCaP) to treat, prevent, and block the transmission of malaria

    Material Physics Rockets MAPHEUS-3/4: Flights and Developments

    Get PDF
    Sounding rockets can serve as a time- and cost-effective platform for a wide range of research under microgravity conditions. It is shown that MAPHEUS – MaterialPhysikalische Experimente Unter Schwerelosigkeit (Materials Physics Experiments under Weightlesness) – a DLR internal R&D project perfectly achieves this whilst maximizing scientific output. MAPHEUS hereby offers launch opportunities on a yearly basis and with comparatively short development cycles of about one year only. In the first three campaigns MAPHEUS provided about three minutes of microgravity time. Recent developments enable to extend this to four minutes above 100 km. Performance data of the recent MAPHEUS-3 flight together with information on the experiment modules are provided. Further an outlook is given on the experiment modules used on board of MAPHEUS-4 and the new vehicle
    corecore