50 research outputs found
Recommended from our members
Aluminum based high temperature thin film electrode system for wireless sensors
Self-sustained, wireless high-temperature stable sensors are developed, which are based on an aluminum alloy as the electrode metallization. Due to its cost-effectiveness accompanied by a high-temperature stability, this alloy substitutes and outperforms the commonly applied expensive Pt- and Ir-based metals. For the first time, a comprehensive structural, electrical and high-frequency characterization of these surface acoustic wave (SAW) sensors is shown. They are based on Catangasite (Ca3TaGa3Si2O14, CTGS) in combination with properly structured cover and barrier layers for the metallization. The frequency characteristics is determined up to 700 °C by ex situ and in situ methods. In addition, the morphology of the AlRu electrodes is analyzed after the thermal loadings and the temperature dependent sheet resistance is measured. The results reveal a reproducible and linear correlation between the applied temperature and the sheet resistance as well as the resonant frequency. In addition, hardly any degradation of the electrodes is detected after the thermal loadings. The observed high-temperature stability of the devices up to at least 700 °C demonstrates the large potential of the AlRu based SAW sensors as a cost-efficient alternative to expensive noble metal based sensors in industrial applications for the support of energy efficient operation
Recommended from our members
Capability study of Ti, Cr, W, Ta and Pt as seed layers for electrodeposited platinum films on Îł-Al2O3 for high temperature and harsh environment applications
High temperature surface acoustic wave sensors based on radio frequency identification technology require adequate antennas of high efficiency and thermal stability for the signal transmission. Platinum is well known and frequently used as a material of choice for high temperature and harsh environment applications because of the high melting point and its chemical stability. Therefore, one way to realize high temperature stable antennas is the combination of a Pt metallization on an Al 2 O 3 substrate. As a cost-effective technique, the Pt film is deposited via electrochemical deposition. For this growth procedure, a pre-deposited metallization on the Al 2 O 3 layer is required. This paper analyzes the influence of various seed layers (Ta, Ti, W, Cr, Pt) on the morphology, stability and electrical properties of the electrochemically-grown Pt thick film after heat treatments up to 1000 â C in air. We find an oxidation of all adhesion layers except for Pt, for which the best electrical properties were measured. Although significant areas of the films delaminate from the substrate, individual anchor structures retain a stable connection between the Pt layer and the rough Al 2 O 3 substrate
Towards green 3D-microfabrication of Bio-MEMS devices using ADEX dry film photoresists
Current trends in miniaturized diagnostics indicate an increasing demand for large quantities of mobile devices for health monitoring and point-of-care diagnostics. This comes along with a need for rapid but preferably also green microfabrication. Dry film photoresists (DFPs) promise low-cost and greener microfabrication and can partly or fully replace conventional silicon-technologies being associated with high-energy demands and the intense use of toxic and climate-active chemicals. Due to their mechanical stability and superior film thickness homogeneity, DFPs outperform conventional spin-on photoresists, such as SU-8, especially when three-dimensional architectures are required for micro-analytical devices (e.g. microfluidics). In this study, we utilize the commercial epoxy-based DFP ADEX to demonstrate various application scenarios ranging from the direct modification of microcantilever beams via the assembly of microfluidic channels to lamination-free patterning of DFPs, which employs the DFP directly as a substrate material. Finally, kinked, bottom-up grown silicon nanowires were integrated in this manner as prospective ion-sensitive field-effect transistors in a bio-probe architecture directly on ADEX substrates. Hence, we have developed the required set of microfabrication protocols for such an assembly comprising metal thin film deposition, direct burn-in of lithography alignment markers, and polymer patterning on top of the DFP
Recommended from our members
Towards Green 3D-Microfabrication of Bio-MEMS Devices Using ADEX Dry Film Photoresists
Current trends in miniaturized diagnostics indicate an increasing demand for large quantities of mobile devices for health monitoring and point-of-care diagnostics. This comes along with a need for rapid but preferably also green microfabrication. Dry film photoresists (DFPs) promise low-cost and greener microfabrication and can partly or fully replace conventional silicon-technologies being associated with high-energy demands and the intense use of toxic and climate-active chemicals. Due to their mechanical stability and superior film thickness homogeneity, DFPs outperform conventional spin-on photoresists, such as SU-8, especially when three-dimensional architectures are required for micro-analytical devices (e.g. microfluidics). In this study, we utilize the commercial epoxy-based DFP ADEX to demonstrate various application scenarios ranging from the direct modification of microcantilever beams via the assembly of microfluidic channels to lamination-free patterning of DFPs, which employs the DFP directly as a substrate material. Finally, kinked, bottom-up grown silicon nanowires were integrated in this manner as prospective ion-sensitive field-effect transistors in a bio-probe architecture directly on ADEX substrates. Hence, we have developed the required set of microfabrication protocols for such an assembly comprising metal thin film deposition, direct burn-in of lithography alignment markers, and polymer patterning on top of the DFP
Recommended from our members
The Influence of the Composition of Ru100âxAlx (x = 50, 55, 60, 67) Thin Films on Their Thermal Stability
RuAl thin films possess a high potential as a high temperature stable metallization for surface acoustic wave devices. During the annealing process of the Ru-Al films, Al2O3 is formed at the surface of the films even under high vacuum conditions, so that the composition of a deposited Ru50Al50 film is shifted to a Ru-rich alloy. To compensate for this effect, the Al content is systematically increased during the deposition of the Ru-Al films. Three Al-rich alloysâRu45Al55, Ru40Al60 and Ru33Al67âwere analyzed concerning their behavior after high temperature treatment under high vacuum and air conditions in comparison to the initial Ru50Al50 sample. Although the filmsâ cross sections show a more homogeneous structure in the case of the Al-rich films, the RuAl phase formation is reduced with increasing Al content
Recommended from our members
Stress and Microstructure Evolution in Mo Thin Films without or with Cover Layers during Thermal-Cycling
The intrinsic stress behavior and microstructure evolution of Molybdenum thin films were investigated to evaluate their applicability as a metallization in high temperature microelectronic devices. For this purpose, 100 nm thick Mo films were sputter-deposited without or with an AlN or SiO2 cover layer on thermally oxidized Si substrates. The samples were subjected to thermal cycling up to 900 °C in ultrahigh vacuum; meanwhile, the in-situ stress behavior was monitored by a laser based Multi-beam Optical Sensor (MOS) system. After preannealing at 900 °C for 24 h, the uncovered films showed a high residual stress at room temperature and a plastic behavior at high temperatures, while the covered Mo films showed an almost entirely elastic deformation during the thermal cycling between room temperature and 900 °C with hardly any plastic deformation, and a constant stress value during isothermal annealing without a notable creep. Furthermore, after thermal cycling, the Mo films without as well as with a cover layer showed low electrical resistivity (â¤10 ΟΊ¡cm)
Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells
The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Youngâs modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grainâsubgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service
Recommended from our members
Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells
The behavior of bi- and trilayer coating systems for flexible a-Si:H based solar cells consisting of a barrier, an electrode, and an absorption layer is studied under mechanical load. First, the film morphology, stress, Youngâs modulus, and crack onset strain (COS) were analyzed for single film coatings of various thickness on polyethylene terephthalate (PET) substrates. In order to demonstrate the role of the microstructure of a single film on the mechanical behavior of the whole multilayer coating, two sets of InSnOx (indium tin oxide, ITO) conductive coatings were prepared. Whereas a characteristic grainâsubgrain structure was observed in ITO-1 films, grain growth was suppressed in ITO-2 films. ITO-1 bilayer coatings showed two-step failure under tensile load with cracks propagating along the ITO-1/a-Si:H-interface, whereas channeling cracks in comparable bi- and trilayers based on amorphous ITO-2 run through all constituent layers. A two-step failure is preferable from an application point of view, as it may lead to only a degradation of the performance instead of the ultimate failure of the device. Hence, the results demonstrate the importance of a fine-tuning of film microstructure not only for excellent electrical properties, but also for a high mechanical performance of flexible devices (e.g., a-Si:H based solar cells) during fabrication in a roll-to-roll process or under service
Recommended from our members
Patterning and control of the nanostructure in plasma thin films with acoustic waves: mechanical vs. electrical polarization effects
Nanostructuration and 2D patterning of thin films are common strategies to fabricate biomimetic surfaces and components for microfluidic, microelectronic or photonic applications. This work presents the fundamentals of a surface nanotechnology procedure for laterally tailoring the nanostructure and crystalline structure of thin films that are plasma deposited onto acoustically excited piezoelectric substrates. Using magnetron sputtering as plasma technique and TiO2 as case example, it is demonstrated that the deposited films depict a sub-millimetre 2D pattern that, characterized by large lateral differences in nanostructure, density (up to 50%), thickness, and physical properties between porous and dense zones, reproduces the wave features distribution of the generated acoustic waves (AW). Simulation modelling of the AW propagation and deposition experiments carried out without plasma and under alternative experimental conditions reveal that patterning is not driven by the collision of ad-species with mechanically excited lattice atoms of the substrate, but emerges from their interaction with plasma sheath ions locally accelerated by the AW-induced electrical polarization field developed at the substrate surface and growing film. The possibilities of the AW activation as a general approach for the tailored control of nanostructure, pattern size, and properties of thin films are demonstrated through the systematic variation of deposition conditions and the adjustment of AW operating parameters