375 research outputs found
Observation of a two-dimensional spin-lattice in non-magnetic semiconductor heterostructures
Tunable magnetic interactions in high-mobility nonmagnetic semiconductor
heterostructures are centrally important to spin-based quantum technologies.
Conventionally, this requires incorporation of "magnetic impurities" within the
two-dimensional (2D) electron layer of the heterostructures, which is achieved
either by doping with ferromagnetic atoms, or by electrostatically printing
artificial atoms or quantum dots. Here we report experimental evidence of a
third, and intrinsic, source of localized spins in high-mobility GaAs/AlGaAs
heterostructures, which are clearly observed in the limit of large setback
distance (=80 nm) in modulation doping. Local nonequilibrium transport
spectroscopy in these systems reveals existence of multiple spins, which are
located in a quasi-regular manner in the 2D Fermi sea, and mutually interact at
temperatures below 100 milliKelvin via the Ruderman-Kittel-Kasuya-Yosida (RKKY)
indirect exchange. The presence of such a spin-array, whose microscopic origin
appears to be disorder-bound, simulates a 2D lattice-Kondo system with
gate-tunable energy scales.Comment: 7 pages + 4 figs. To appear in Nature Physics. This is the original
submitted version. Final version will be posted six months after publication.
The Supplementary Information can be downloaded from:
http://www.physics.iisc.ernet.in/~arindam/Supplementary_Information_NPHYS-2006-08-0
0812B.pd
Thermoelectric Properties of Electrostatically Tunable Antidot Lattices
We report on the fabrication and characterization of a device which allows
the formation of an antidot lattice (ADL) using only electrostatic gating. The
antidot potential and Fermi energy of the system can be tuned independently.
Well defined commensurability features in magnetoresistance as well as
magnetothermopower are obsereved. We show that the thermopower can be used to
efficiently map out the potential landscape of the ADL.Comment: 4 pages, 3 figures; to appear in Appl. Phys. Let
Transport Through an Electrostatically Defined Quantum Dot Lattice in a Two-Dimensional Electron Gas
Quantum dot lattices (QDLs) have the potential to allow for the tailoring of
optical, magnetic and electronic properties of a user-defined artificial solid.
We use a dual gated device structure to controllably tune the potential
landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the
formation of a periodic QDL. The current-voltage characteristics, I(V), follow
a power law, as expected for a QDL. In addition, a systematic study of the
scaling behavior of I(V) allows us to probe the effects of background disorder
on transport through the QDL. Our results are particularly important for
semiconductor-based QDL architectures which aim to probe collective phenomena.Comment: 6 pages, 4 figure
Anaerobic Oxidation of Methane at a Marine Methane Seep in a Forearc Sediment Basin off Sumatra, Indian Ocean
A cold methane seep was discovered in a forearc sediment basin off the island Sumatra, exhibiting a methane-seep adapted microbial community. A defined seep center of activity, like in mud volcanoes, was not discovered. The seep area was rather characterized by a patchy distribution of active spots. The relevance of anaerobic oxidation of methane (AOM) was reflected by 13C-depleted isotopic signatures of dissolved inorganic carbon. The anaerobic conversion of methane to CO2 was confirmed in a 13C-labeling experiment. Methane fueled a vital microbial community with cell numbers of up to 4 × 109 cells cm−3 sediment. The microbial community was analyzed by total cell counting, catalyzed reporter deposition–fluorescence in situ hybridization (CARD–FISH), quantitative real-time PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). CARD–FISH cell counts and qPCR measurements showed the presence of Bacteria and Archaea, but only small numbers of Eukarya. The archaeal community comprised largely members of ANME-1 and ANME-2. Furthermore, members of the Crenarchaeota were frequently detected in the DGGE analysis. Three major bacterial phylogenetic groups (δ-Proteobacteria, candidate division OP9, and Anaerolineaceae) were abundant across the study area. Several of these sequences were closely related to the genus Desulfococcus of the family Desulfobacteraceae, which is in good agreement with previously described AOM sites. In conclusion, the majority of the microbial community at the seep consisted of AOM-related microorganisms, while the relevance of higher hydrocarbons as microbial substrates was negligible
Methanogenic hydrocarbon degradation and methane oxidation in benthic microbial communities
[no abstract
A Scalable Multi-Channel Software Potentiostat
Electronic hardware is a major cost driver when scaling bio-electrical systems (BES) for biological methanation. Many academic publications reporting BES experiments lack statistical power because such experiments are seldom carried out in replicates. One reason is that conventional electronic potentiostats often lack sufficient independent channels required for replication. Nonetheless, replication is necessary for any statistical analysis. Here, I developed a simple, easy-to-scale multi-channel software potentiostat which solves these problems. The software controls off-the-shelf hardware saving up to 80% of the hardware cost spent otherwise for electronic potentiostats. The difference between the setpoint and the measured working electrode potential was comparable to that of hardware potentiostats. Chronoamperomtric experiments were carried out in parallel for 10 days at +0.300 V and −0.800 V. A scaling experiment using a tubular wastewater treatment reactor demonstrated that the software can be used to scale BES. The results show that a simple proportional controller can replace expensive potentiostats for chronoamperometry
The effect of omega-3 fatty acids on central nervous system remyelination in fat-1 mice
Background There is a large body of experimental evidence suggesting that
omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are capable of modulating
immune function. Some studies have shown that these PUFAs might have a
beneficial effect in patients suffering form multiple sclerosis (MS), a
chronic inflammatory demyelinating disease of the central nervous system
(CNS). This could be due to increased n-3 PUFA-derived anti-inflammatory lipid
mediators. In the present study we tested the effect of an endogenously
increased n-3 PUFA status on cuprizone-induced CNS demyelination and
remyelination in fat-1 mice versus their wild-type (wt) littermates. Fat-1
mice express an n-3 desaturase, which allows them to convert n-6 PUFAs into
n-3 PUFAs. Results CNS lipid profiles in fat-1 mice showed a significant
increase of eicosapentaenoic acid (EPA) levels but similar docosahexaenoic
acid levels compared to wt littermates. This was also reflected in
significantly higher levels of monohydroxy EPA metabolites such as
18-hydroxyeicosapentaenoic acid (18-HEPE) in fat-1 brain tissue. Feeding fat-1
mice and wt littermates 0.2% cuprizone for 5 weeks caused a similar degree of
CNS demyelination in both groups; remyelination was increased in the fat-1
group after a recovery period of 2 weeks. However, at p = 0.07 this difference
missed statistical significance. Conclusions These results indicate that n-3
PUFAs might have a role in promotion of remyelination after toxic injury to
CNS oligodendrocytes. This might occur either via modulation of the immune
system or via a direct effect on oligodendrocytes or neurons through EPA-
derived lipid metabolites such as 18-HEPE
The role of the cortical cytoskeleton
We generated Dictyostelium double mutants lacking the two F-actin crosslinking proteins alpha-actinin and gelation factor by inactivating the corresponding genes via homologous recombination. Here we investigated the consequences of these deficiencies both at the single cell level and at the multicellular stage. We found that loss of both proteins severely affected growth of the mutant cells in shaking suspension, and led to a reduction of cell size from 12 microns in wild-type cells to 9 microns in mutant cells. Moreover the cells did not exhibit the typical polarized morphology of aggregating Dictyostelium cells but had a more rounded cell shape, and also exhibited an increased sensitivity towards osmotic shock and a reduced rate of phagocytosis. Development was heavily impaired and never resulted in the formation of fruiting bodies. Expression of developmentally regulated genes and the final developmental stages that were reached varied, however, with the substrata on which the cells were deposited. On phosphate buffered agar plates the cells were able to form tight aggregates and mounds and to express prespore and prestalk cell specific genes. Under these conditions the cells could perform chemotactic signalling and cell behavior was normal at the onset of multicellular development as revealed by time-lapse video microscopy. Double mutant cells were motile but speed was reduced by approximately 30% as compared to wild type. These changes were reversed by expressing the gelation factor in the mutant cells. We conclude that the actin assemblies that are formed and/or stabilized by both F-actin crosslinking proteins have a protective function during osmotic stress and are essential for proper cell shape and motility
- …