Quantum dot lattices (QDLs) have the potential to allow for the tailoring of
optical, magnetic and electronic properties of a user-defined artificial solid.
We use a dual gated device structure to controllably tune the potential
landscape in a GaAs/AlGaAs two-dimensional electron gas, thereby enabling the
formation of a periodic QDL. The current-voltage characteristics, I(V), follow
a power law, as expected for a QDL. In addition, a systematic study of the
scaling behavior of I(V) allows us to probe the effects of background disorder
on transport through the QDL. Our results are particularly important for
semiconductor-based QDL architectures which aim to probe collective phenomena.Comment: 6 pages, 4 figure