8,867 research outputs found
Design and Use of Capacitive Force Transducers for Superconducting Magnet Models for the LHC
Capacitive force transducers have been developed and used for monitoring the coil pre-stress during assembly and excitation of several dipole models for LHC. Typically these gauges are strips several tenths of millimeter thick that can be made according to a large variety of geometries. Inserted between two surfaces, they allow to measure the distribution of contact pressures up to 200 MPa from am bient temperature to superfluid helium also in presence of a static magnetic field. The sequence and quality of the manufacturing steps are determining factors in the performance of this kind of gauge s. The paper describes the basic principles, possible configuration geometries, fabrication and calibration procedures of these gauges. Finally the applications of capacitive gauges in the framework o f the R&D programme of superconducting short dipole models for LHC are reviewed and discussed
Dimensional Reduction in Non-Supersymmetric Theories
It is shown that regularisation by dimensional reduction is a viable
alternative to dimensional regularisation in non-supersymmetric theories.Comment: 13 pages, phyzzx, LTH 32
Proximity effect model of ultra-narrow NbN strips
We show that narrow superconducting strips in superconducting (S) and normal
(N) states are universally described by the model presenting them as lateral
NSN proximity systems in which the superconducting central band is sandwiched
between damaged edge-bands with suppressed superconductivity.The width of the
superconducting band was experimentally determined from the value of magnetic
field at which the band transits from the Meissner state to the static vortex
state. Systematic experimental study of 4.9 nm thick NbN strips with widths in
the interval from 50 nm to 20 m, which are all smaller than the Pearl's
length, demonstrates gradual evolution of the temperature dependence of the
critical current with the change of the strip width
Conformal Symmetry and Duality between Free Particle, H-atom and Harmonic Oscillator
We establish a duality between the free massless relativistic particle in d
dimensions, the non-relativistic hydrogen atom (1/r potential) in (d-1) space
dimensions, and the harmonic oscillator in (d-2) space dimensions with its mass
given as the lightcone momentum of an additional dimension. The duality is in
the sense that the classical action of these systems are gauge fixed forms of
the same worldline gauge theory action at the classical level, and they are all
described by the same unitary representation of the conformal group SO(d,2) at
the quantum level. The worldline action has a gauge symmetry Sp(2) which treats
canonical variables (x,p) as doublets and exists only with a target spacetime
that has d spacelike dimensions and two timelike dimensions. This spacetime is
constrained due to the gauge symmetry, and the various dual solutions
correspond to solutions of the constraints with different topologies. For
example, for the H-atom the two timelike dimensions X^{0'},X^{0} live on a
circle. The model provides an example of how realistic physics can be viewed as
existing in a larger covariant space that includes two timelike coordinates,
and how the covariance in the larger space unifies different looking physics
into a single system.Comment: Latex, 23 pages, minor improvements. In v3 a better gauge choice for
u for the H-atom is made; the results are the sam
Recommended from our members
A 108-h total sleep deprivation did not impair fur seal performance in delayed matching to sample task
While the majority of studies have concluded that sleep deprivation causes detrimental effects on various cognitive processes, some studies reported conflicting results. We examined the effects of a 108-h total sleep deprivation (TSD) on working memory in the northern fur seal, an animal with unusual sleep phenomenology and long-range annual migrations. The performance of fur seals was evaluated in a two-choice visual delayed matching to sample (DMTS) task, which is commonly used to evaluate working memory. In baseline conditions, the performance of fur seals in a DMTS task based on the percentage of errors was somewhat comparable with that in nonhuman primates at similar delays. We have determined that a 108-h TSD did not affect fur seals' performance in a visual DMTS task as measured by overall percentage of errors and response latencies. On the contrary, all fur seals improved task performance over the study, including the baseline, TSD and recovery conditions. In addition, TSD did not change the direction and strength of the pattern of behavioral lateralization in fur seals. We conclude that a 108-h TSD did not interfere with working memory in a DMTS test in northern fur seals
Gauge symmetry in phase space with spin, a basis for conformal symmetry and duality among many interactions
We show that a simple OSp(1/2) worldline gauge theory in 0-brane phase space
(X,P), with spin degrees of freedom, formulated for a d+2 dimensional spacetime
with two times X^0,, X^0', unifies many physical systems which ordinarily are
described by a 1-time formulation. Different systems of 1-time physics emerge
by choosing gauges that embed ordinary time in d+2 dimensions in different
ways. The embeddings have different topology and geometry for the choice of
time among the d+2 dimensions. Thus, 2-time physics unifies an infinite number
of 1-time physical interacting systems, and establishes a kind of duality among
them. One manifestation of the two times is that all of these physical systems
have the same quantum Hilbert space in the form of a unique representation of
SO(d,2) with the same Casimir eigenvalues. By changing the number n of spinning
degrees of freedom the gauge group changes to OSp(n/2). Then the eigenvalue of
the Casimirs of SO(d,2) depend on n and then the content of the 1-time physical
systems that are unified in the same representation depend on n. The models we
study raise new questions about the nature of spacetime.Comment: Latex, 42 pages. v2 improvements in AdS section. In v3 sec.6.2 is
modified; the more general potential is limited to a smaller clas
Considerations on Super Poincare Algebras and their Extensions to Simple Superalgebras
We consider simple superalgebras which are a supersymmetric extension of
\fspin(s,t) in the cases where the number of odd generators does not exceed
64. All of them contain a super Poincar\'e algebra as a contraction and another
as a subalgebra. Because of the contraction property, some of these algebras
can be interpreted as de Sitter or anti de Sitter superalgebras. However, the
number of odd generators present in the contraction is not always minimal due
to the different splitting properties of the spinor representations under a
subalgebra. We consider the general case, with arbitrary dimension and
signature, and examine in detail particular examples with physical implications
in dimensions and .Comment: 16 pages, AMS-LaTeX. Version to appear in the Reviews in Mathematical
Physic
A Computational Procedure to Detect a New Type of High Dimensional Chaotic Saddle and its Application to the 3-D Hill's Problem
A computational procedure that allows the detection of a new type of
high-dimensional chaotic saddle in Hamiltonian systems with three degrees of
freedom is presented. The chaotic saddle is associated with a so-called
normally hyperbolic invariant manifold (NHIM). The procedure allows to compute
appropriate homoclinic orbits to the NHIM from which we can infer the existence
a chaotic saddle. NHIMs control the phase space transport across an equilibrium
point of saddle-centre-...-centre stability type, which is a fundamental
mechanism for chemical reactions, capture and escape, scattering, and, more
generally, ``transformation'' in many different areas of physics. Consequently,
the presented methods and results are of broad interest. The procedure is
illustrated for the spatial Hill's problem which is a well known model in
celestial mechanics and which gained much interest e.g. in the study of the
formation of binaries in the Kuiper belt.Comment: 12 pages, 6 figures, pdflatex, submitted to JPhys
Supersymmetric Two-Time Physics
We construct an Sp(2,R) gauge invariant particle action which possesses
manifest space-time SO(d,2) symmetry, global supersymmetry and kappa
supersymmetry. The global and local supersymmetries are non-abelian
generalizations of Poincare type supersymmetries and are consistent with the
presence of two timelike dimensions. In particular, this action provides a
unified and explicit superparticle representation of the superconformal groups
OSp(N/4), SU(2,2/N) and OSp(8*/N) which underlie various AdS/CFT dualities in
M/string theory. By making diverse Sp(2,R) gauge choices our action reduces to
diverse one-time physics systems, one of which is the ordinary (one-time)
massless superparticle with superconformal symmetry that we discuss explicitly.
We show how to generalize our approach to the case of superalgebras, such as
OSp(1/32), which do not have direct space-time interpretations in terms of only
zero branes, but may be realizable in the presence of p-branes.Comment: Latex, 18 page
- …