41 research outputs found

    Enzyme Sequence and Its Relationship to Hyperbaric Stability of Artificial and Natural Fish Lactate Dehydrogenases

    Get PDF
    The cDNAs of lactate dehydrogenase b (LDH-b) from both deep-sea and shallow living fish species, Corphaenoides armatus and Gadus morhua respectively, have been isolated, sequenced and their encoded products overproduced as recombinant enzymes in E. coli. The proteins were characterised in terms of their kinetic and physical properties and their ability to withstand high pressures. Although the two proteins are very similar in terms of their primary structure, only 21 differences at the amino acid level exist between them, the enzyme from the deep-sea species has a significantly increased tolerance to pressure and a higher thermostability. It was possible to investigate whether the changes in the N-terminal or C-terminal regions played a greater role in barophilic adaptation by the construction of two chimeric enzymes by use of a common restriction site within the cDNAs. One of these hybrids was found to have even greater pressure stability than the recombinant enzyme from the deep-living fish species. It was possible to conclude that the major adaptive changes to pressure tolerance must be located in the N-terminal region of the protein. The types of changes that are found and their spatial location within the protein structure are discussed. An analysis of the kinetic parameters of the enzymes suggests that there is clearly a trade off between Km and kcat values, which likely reflects the necessity of the deep-sea enzyme to operate at low temperatures

    Fluid record of rock exhumation across the brittleductile transition during formation of a Metamorphic Core Complex (Naxos Island, Cyclades, Greece)

    No full text
    Fluid inclusions trapped in quartz veins hosted by a leucogneiss from the southern part of the Naxos Metamorphic Core Complex (Attic-Cycladic-Massif, Greece) were studied to determine the evolution of the fluid record of metamorphic rocks during their exhumation across the ductile/brittle transition. Three sets of quartz veins (V-M2, V-BD & V-B) are distinguished. The V-M2 and V-BD are totally or, respectively, partially transposed into the foliation of the leucogneiss. They formed by hydrofracturing alternating with ductile deformation accommodated by crystal-plastic deformation. The V-B is discordant to the foliation and formed by fracturing during exhumation without subsequent ductile transposition. Fluids trapped during crystalplastic deformation comprise two very distinct fluid types, namely a CO2-rich fluid and a high-salinity brine, that are interpreted to represent immiscible fluids generated from metamorphic reactions and the crystallization of magmas respectively. They were initially trapped at approximate to 625 degrees C and 400MPa and then remobilized during subsequent ductile deformation resulting in various degrees of mixing of the two end-members with later trapping conditions of approximate to 350 degrees C and 140MPa. In contrast, brittle microcracks contain aqueous fluids trapped at 250 degrees C and 80MPa. All veins display a similar 13C pointing to carbon that was trapped at depth and then preserved in the fluid inclusions throughout the exhumation history. In contrast, the D signature is marked by a drastic difference between (i) V-M2 and V-BD veins that are dominated by carbonic, aqueous-carbonic and high-salinity fluids of metamorphic and magmatic origin characterized by D between 56 parts per thousand and 66 parts per thousand, and (ii) V-B veins that are dominated by aqueous fluids of meteoric origin characterized by D between 40 parts per thousand and 46 parts per thousand. The retrograde PT pathway implies that the brittle/ductile transition separates two structurally, chemically and thermally distinct fluid reservoirs, namely (i) the ductile crust into which fluids originating from crystallizing magmas and fluids in equilibrium with metamorphic rocks circulate through a geothermal gradient of 30 degrees C km1 at lithostatic pressure, and (ii) the brittle upper crust through which meteoric fluids percolate through a high geothermal gradient of 55 degrees C km1 at hydrostatic pressure

    Deformation of the lithosphere : how small structures tell a big story

    No full text
    We document the interplay between meteoric fluid flow and deformation processes in quartzite-dominated lithologies within a ductile shear zone in the footwall of a Cordilleran extensional fault (Kettle detachment system, Washington, USA). Across 150 m of shear zone section, hydrogen isotope ratios (delta D) from synkinematic muscovite fish are constant (delta D similar to -130 parts per thousand) and consistent with a meteoric fluid source. Quartz-muscovite oxygen isotope thermometry indicates equilibrium fractionation temperatures of similar to 365 +/- 30 degrees C in the lower part of the section, where grain-scale quartz deformation was dominated by grain boundary migration recrystallization. In the upper part of the section, muscovite shows increasing intragrain compositional zoning, and quartz microstructures reflect bulging reaystallization, solution-precipitation, and microcracking that developed during progressive cooling and exhumation. The preserved microstructural characteristics and hydrogen isotope fingerprints of meteoric fluids developed over a short time interval as indicated by consistent mica Ar-40/Ar-39 ages ranging between 51 and 50 Ma over the entire section. Pervasive fluid flow became increasingly channelized during detachment activity, leading to microstructural heterogeneity and large shifts in quartz delta O-18 values on a meter scale. Ductile deformation ended when brittle motion on the detachment fault rapidly exhumed the mylonitic footwall

    The nature of the southern West African craton lithosphere inferred from its electrical resistivity

    No full text
    The West-African craton is defined by a combination of Archean and Palaeoproterozoic rocks that stabilised at ~2 Ga towards the end of the Paleoproterozoic Eburnean Orogeny, and therefore may reflect the transition from Archean to modern tectonic processes. Exploring its present lithospheric architecture aids further understanding of not only the craton’s stability through its history but also its formation. We investigate the lithospheric structure of the craton through analysing and modelling magnetotelluric (MT) data from a 500-km-long east-west profile in northern Ghana and southern Burkina Faso crossing part of the BaoulĂ©-Mossi Domain and reaching the Volta Basin in the south-eastern part of the craton. Although the MT stations are along a 2D profile, due to the complexity of the structures characterising the area, 3D resistivity modelling of the data is performed to obtain insights on the thermal signature and composition of the subcontinental lithosphere beneath the area. The thermal structure and water content estimates from different resistivity models highlight a strong dependence on the starting model in the 3D inversions, but still enable us to put constraints on the deep structure of the craton. The present‐day thermal lithosphere‐asthenosphere boundary (LAB) depth is estimated to be at least 250 km beneath the BaoulĂ©-Mossi domain. The area likely transitions from a cold and thick lithosphere with relatively low water content into thinner, more fertile lithosphere below the Volta Basin. Although the inferred amount of water could be explained by Paleoproterozoic subduction processes involved in the formation of the BaoulĂ©-Mossi domain, later enrichment of the lithosphere cannot be excluded

    Crustal structure of southern Burkina Faso inferred from magnetotelluric, gravity and magnetic data

    Get PDF
    Understanding the architecture of the West African craton at depth is essential to be able to reconstruct its evolution. Our study focuses on the crustal imaging of structures and geometries characterizing the crust of the Leo-Man shield with broadband and long period magnetotelluric data collected in southern Burkina Faso and covering a 220 km long profile. The resulting 3D resistivity crustal model highlights the distribution of the granite-greenstone assemblages with depth showing excellent correlation with mapped surficial lithologies. The whole crust of southern Burkina Faso is resistive, with lateral as opposed to vertical major resistivity contrasts, reflecting the location of major-scale shear zones characterizing this part of the Baoule-Mossi domain. Ground gravity data acquired along the same line as the MT data were also modeled and show relatively good correspondence with the resistivity model. The new resistivity and gravity models compared with results from joint inversion of gravity and aeromagnetic data highlight significant changes between the greenstone belts and granitoid domains along the profile. The comparison of the geophysics with the geology enables us to define new depth constraints of the main tectonic features in the area. The observed large scale dipping shear zones favour the model of crustal building through major parallel thrust faults
    corecore