35 research outputs found
Typology of Motor Sports Museum and Library Research Resources
Museums and libraries are the foundation of effective research. There is fragmentation and disorganization in the world of motor sports among those who have an interest in its history. In motor sports the past is the tradition of the future. There needs to be a typology that will help to organize motor sports research resources to make the task of locating information simpler. The purpose of this manuscript was to develop such a typology
Quantitative modelling of type Ia supernovae spectral time series: Constraining the explosion physics
Multiple explosion mechanisms have been proposed to explain type Ia
supernovae (SNe Ia). Empirical modelling tools have also been developed that
allow for fast, customised modelling of individual SNe and direct comparisons
between observations and explosion model predictions. Such tools have provided
useful insights, but the subjective nature with which empirical modelling is
performed makes it difficult to obtain robust constraints on the explosion
physics or expand studies to large populations of objects. Machine learning
accelerated tools have therefore begun to gain traction. In this paper, we
present riddler, a framework for automated fitting of SNe Ia spectral sequences
up to shortly after maximum light. We train a series of neural networks on
realistic ejecta profiles predicted by the W7 and N100 explosion models to
emulate full radiative transfer simulations and apply nested sampling to
determine the best-fitting model parameters for multiple spectra of a given SN
simultaneously. We show that riddler is able to accurately recover the
parameters of input spectra and use it to fit observations of two well-studied
SNe Ia. We also investigate the impact of different weighting schemes when
performing quantitative spectral fitting and show that best-fitting models and
parameters are highly dependent on the assumed weighting schemes and priors. As
spectroscopic samples of SNe Ia continue to grow, automated spectral fitting
tools such as riddler will become increasingly important to maximise the
physical constraints that can be gained in a quantitative and consistent
manner.Comment: 28 pages, 4 appendices, 18 figures, 4 tables. Accepted for
publication in MNRAS. The riddler code is publicly available at
https://github.com/MarkMageeAstro/Riddle
Ejecta- and Size-Scaling Considerations from Impacts of Glass Projectiles into Sand
One of the most promising means of learning how initial impact conditions are related to the processes leading to the formation of a planetary-scale crater is through scaling relationships.1,2,3 The first phase of deriving such relationships has led to great insight into the cratering process and has yielded predictive capabilities that are mathematically rigorous and internally consistent. Such derivations typically have treated targets as continuous media; in many, cases, however, planetary materials represent irregular and discontinuous targets, the effects of which on the scaling relationships are still poorly understood.4,5 We continue to examine the effects of varying impact conditions on the excavation and final dimensions of craters formed in sand. Along with the more commonly treated variables such as impact speed, projectile size and material, and impact angle,6 such experiments also permit the study of changing granularity and friction angle of the target materials. This contribution presents some of the data collected during and after the impact of glass spheres into a medium-grained sand
Ants, Cataglyphis cursor, Use Precisely Directed Rescue Behavior to Free Entrapped Relatives
Although helping behavior is ubiquitous throughout the animal kingdom, actual rescue activity is particularly rare. Nonetheless, here we report the first experimental evidence that ants, Cataglyphis cursor, use precisely directed rescue behavior to free entrapped victims; equally important, they carefully discriminate between individuals in distress, offering aid only to nestmates. Our experiments simulate a natural situation, which we often observed in the field when collecting Catagyphis ants, causing sand to collapse in the process. Using a novel experimental technique that binds victims experimentally, we observed the behavior of separate, randomly chosen groups of 5 C. cursor nestmates under one of six conditions. In five of these conditions, a test stimulus (the “victim”) was ensnared with nylon thread and held partially beneath the sand. The test stimulus was either (1) an individual from the same colony; (2) an individual from a different colony of C cursor; (3) an ant from a different ant species; (4) a common prey item; or, (5) a motionless (chilled) nestmate. In the final condition, the test stimulus (6) consisted of the empty snare apparatus. Our results demonstrate that ants are able to recognize what, exactly, holds their relative in place and direct their behavior to that object, the snare, in particular. They begin by excavating sand, which exposes the nylon snare, transporting sand away from it, and then biting at the snare itself. Snare biting, a behavior never before reported in the literature, demonstrates that rescue behavior is far more sophisticated, exact and complexly organized than the simple forms of helping behavior already known, namely limb pulling and sand digging. That is, limb pulling and sand digging could be released directly by a chemical call for help and thus result from a very simple mechanism. However, it's difficult to see how this same releasing mechanism could guide rescuers to the precise location of the nylon thread, and enable them to target their bites to the thread itself
Adolescent Male Attitudes About Singing in Choir
The purpose of this study was to investigate the factors that influence adolescent males to enroll in school choir as an elective class and to assess their attitudes about singing in general, self-concept of their own voices, and perception of others’ view of adolescent males’ participation in choir. Data were obtained from 101 adolescent males who were enrolled in choir at one of six participating schools, and were in Grade 7 or Grade 8. Data analysis showed that most participants enrolled in choir because they thought it was fun and/or they were good singers. Results also indicated that peer pressure factored less than the enjoyment of singing in influencing their decision to enroll in choir. Other results suggested that the participants perceived support from their families, principals, and nonmusic teachers in their decision to take choir and that they perceived slightly less support from coaches at their school. The study indicates a need for future research of adolescent males who have chosen not to participate in choir and their attitudes about choir participation. Future research studying the attitudes of adolescent males from other regions and their attitudes about choir participation is also recommended.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Rapid Intradermal Delivery of Liquid Formulations Using a Hollow Microstructured Array
Purpose The purpose of this work is to demonstrate rapid intradermal delivery of up to 1.5 mL of formulation using a hollow microneedle delivery device designed for self-application. Methods 3M’s hollow Microstructured Transdermal System (hMTS) was applied to domestic swine to demonstrate delivery of a variety of formulations including small molecule salts and proteins. Blood samples were collected after delivery and analyzed via HPLC or ELISA to provide a PK profile for the delivered drug. Site evaluations were conducted post delivery to determine skin tolerability. Results Up to 1.5 mL of formulation was infused into swine at a max rate of approximately 0.25 mL/min. A red blotch, the size of the hMTS array, was observed immediately after patch removal, but had faded so as to be almost indistinguishable 10 min post-patch removal. One-mL deliveries of commercial formulations of naloxone hydrochloride and human growth hormone and a formulation of equine anti-tetanus toxin were completed in swine. With few notable differences, the resulting PK profiles were similar to those achieved following subcutaneous injection of these formulations. Conclusions 3M’s hMTS can provide rapid, intradermal delivery of 300–1,500 µL of liquid formulations of small molecules salts and proteins, compounds not typically compatible with passive transdermal delivery. KEY WORDS transdermal drug delivery. microneedles. intradermal. hollow microstructures. MT
Social presence and dishonesty in retail
Self-service checkouts (SCOs) in retail can benefit consumers and retailers, providing control and autonomy to shoppers independent from staff, together with reduced queuing times. Recent research indicates that the absence of staff may provide the opportunity for consumers to behave dishonestly, consistent with a perceived lack of social presence. This study examined whether a social presence in the form of various instantiations of embodied, visual, humanlike SCO interface agents had an effect on opportunistic behaviour. Using a simulated SCO scenario, participants experienced various dilemmas in which they could financially benefit themselves undeservedly. We hypothesised that a humanlike social presence integrated within the checkout screen would receive more attention and result in fewer instances of dishonesty compared to a less humanlike agent. This was partially supported by the results. The findings contribute to the theoretical framework in social presence research. We concluded that companies adopting self-service technology may consider the implementation of social presence in technology applications to support ethical consumer behaviour, but that more research is required to explore the mixed findings in the current study.<br/
Recommended from our members
ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)
The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity. Retrofit technologies that address the challenges of slow-speed integral compression are: (1) optimum turndown using a combination of speed and clearance with single-acting operation as a last resort; (2) if single-acting is required, implement infinite length nozzles to address nozzle pulsation and tunable side branch absorbers for 1x lateral pulsations; and (3) advanced valves, either the semi-active plate valve or the passive rotary valve, to extend valve life to three years with half the pressure drop. This next generation of slow-speed compression should attain 95% efficiency, a three-year valve life, and expanded turndown. New equipment technologies that address the challenges of large-horsepower, high-speed compression are: (1) optimum turndown with unit speed; (2) tapered nozzles to effectively reduce nozzle pulsation with half the pressure drop and minimization of mechanical cylinder stretch induced vibrations; (3) tunable side branch absorber or higher-order filter bottle to address lateral piping pulsations over the entire extended speed range with minimal pressure drop; and (4) semi-active plate valves or passive rotary valves to extend valve life with half the pressure drop. This next generation of large-horsepower, high-speed compression should attain 90% efficiency, a two-year valve life, 50% turndown, and less than 0.75 IPS vibration. This program has generated proof-of-concept technologies with the potential to meet these ambitious goals. Full development of these identified technologies is underway. The GMRC has committed to pursue the most promising enabling technologies for their industry
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival