1,116 research outputs found
Atmospheric turbulence power spectral measurements to long wavelengths for several meteorological conditions
Use of power spectral design techniques for supersonic transports requires accurate definition of atmospheric turbulence in the long wavelength region below the knee of the power spectral density function curve. Examples are given of data obtained from a current turbulence flight sampling program. These samples are categorized as (1) convective, (2) wind shear, (3) rotor, and (4) mountain-wave turbulence. Time histories, altitudes, root-mean-square values, statistical degrees of freedom, power spectra, and integral scale values are shown and discussed
PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 3: Case manual (version 1.0)
Numerous applications of the PAN AIR computer program system are presented. PAN AIR is user-oriented tool for analyzing and/or designing aerodynamic configurations in subsonic or supersonic flow using a technique generally referred to as a higher order panel method. Problems solved include simple wings in subsonic and supersonic flow, a wing-body in supersonic flow, wing with deflected flap in subsonic flow, design of two-dimensional and three-dimensional wings, axisymmetric nacelle in supersonic flow, and wing-canard-tail-nacelle-fuselage combination in supersonic flow
PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 2: User's manual (version 3.0)
A comprehensive description of user problem definition for the PAN AIR (Panel Aerodynamics) system is given. PAN AIR solves the 3-D linear integral equations of subsonic and supersonic flow. Influence coefficient methods are used which employ source and doublet panels as boundary surfaces. Both analysis and design boundary conditions can be used. This User's Manual describes the information needed to use the PAN AIR system. The structure and organization of PAN AIR are described, including the job control and module execution control languages for execution of the program system. The engineering input data are described, including the mathematical and physical modeling requirements. Version 3.0 strictly applies only to PAN AIR version 3.0. The major revisions include: (1) inputs and guidelines for the new FDP module (which calculates streamlines and offbody points); (2) nine new class 1 and class 2 boundary conditions to cover commonly used modeling practices, in particular the vorticity matching Kutta condition; (3) use of the CRAY solid state Storage Device (SSD); and (4) incorporation of errata and typo's together with additional explanation and guidelines
A New Upper Limit for the Tau-Neutrino Magnetic Moment
Using a prompt neutrino beam in which a nu_tau component was identified for
the first time, the nu_tau magnetic moment was measured based on a search for
an anomalous increase in the number of neutrino-electron interactions. One such
event was observed when 2.3 were expected from background processes, giving an
upper 90% confidence limit of 3.9x10^-7 Bohr magnetons.Comment: 9 pages; 1 figur
A first measurement of the interaction cross section of the tau neutrino
The DONuT experiment collected data in 1997 and published first results in
2000 based on four observed charged-current (CC) interactions. The
final analysis of the data collected in the experiment is presented in this
paper, based on protons on target using the 800 GeV
Tevatron beam at Fermilab. The number of observed CC interactions is
9, from a total of 578 observed neutrino interactions. We calculated the
energy-independent part of the tau-neutrino CC cross section (), relative to the well-known and cross sections. The
ratio / was found to be
. The CC cross section was found to be cm. Both results are in
agreement the Standard Model.Comment: 37 pages, 15 figure
Dalitz Plot Analysis of the Decay D^+ --> K^- pi^+ pi^+ and Indication of a Low-Mass Scalar K pi Resonance
We study the Dalitz plot of the decay D^+ --> K^- pi^+ pi^+ with a sample of
15090 events from Fermilab experiment E791. Modeling the decay amplitude as the
coherent sum of known K pi resonances and a uniform nonresonant term, we do not
obtain an acceptable fit. If we allow the mass and width of the K^*_0(1430) to
float, we obtain values consistent with those from PDG but the chi^2 per degree
of freedom of the fit is still unsatisfactory. A good fit is found when we
allow for the presence of an additional scalar resonance, with mass 797 +/- 19
+/- 43 MeV/c^2 and width 410 +/- 43 +/- 87 MeV/c^2. The mass and width of the
K^*_0(1430) become 1459 +/- 7 +/- 5 MeV/c^2 and 175 +/- 12 +/- 12 MeV/c^2,
respectively. Our results provide new information on the scalar sector in
hadron spectroscopy.Comment: Accepted for publication in Physical Review Letter
Search for the Flavor-Changing Neutral-Current Decays and
We report the results of a search for the flavor-changing neutral-current
decays and in
data from Fermilab charm hadroproduction experiment E791. No signal above
background is found, and we obtain upper limits on branching fractions,
and
, at the 90\% confidence
level.Comment: nine pages with figures; compressed, uuencoded postscrip
Experimental evidence for a light and broad scalar resonance in decay
From a sample of decay, we find
. Using a coherent amplitude analysis
to fit the Dalitz plot of this decays, we find strong evidence that a scalar
resonance of mass MeV/ and width MeV/ accounts for approximately half of all decays.Comment: 10 pages, 3 eps figure
Study of the decay and measurement of masses and widths
From a sample of 848 44 decays, we find
. Using a Dalitz plot analysis of this
three body decay, we find significant contributions from the channels
, , , , and
. We present also the values obtained for masses and widths of
the resonances and .Comment: 10 pages, 3 eps figure
- …
