11 research outputs found

    Control of Vertebrate Skeletal Mineralization by Polyphosphates

    Get PDF
    BACKGROUND:Skeletons are formed in a wide variety of shapes, sizes, and compositions of organic and mineral components. Many invertebrate skeletons are constructed from carbonate or silicate minerals, whereas vertebrate skeletons are instead composed of a calcium phosphate mineral known as apatite. No one yet knows why the dynamic vertebrate skeleton, which is continually rebuilt, repaired, and resorbed during growth and normal remodeling, is composed of apatite. Nor is the control of bone and calcifying cartilage mineralization well understood, though it is thought to be associated with phosphate-cleaving proteins. Researchers have assumed that skeletal mineralization is also associated with non-crystalline, calcium- and phosphate-containing electron-dense granules that have been detected in vertebrate skeletal tissue prepared under non-aqueous conditions. Again, however, the role of these granules remains poorly understood. Here, we review bone and growth plate mineralization before showing that polymers of phosphate ions (polyphosphates: (PO(3)(-))(n)) are co-located with mineralizing cartilage and resorbing bone. We propose that the electron-dense granules contain polyphosphates, and explain how these polyphosphates may play an important role in apatite biomineralization. PRINCIPAL FINDINGS/METHODOLOGY:The enzymatic formation (condensation) and destruction (hydrolytic degradation) of polyphosphates offers a simple mechanism for enzymatic control of phosphate accumulation and the relative saturation of apatite. Under circumstances in which apatite mineral formation is undesirable, such as within cartilage tissue or during bone resorption, the production of polyphosphates reduces the free orthophosphate (PO(4)(3-)) concentration while permitting the accumulation of a high total PO(4)(3-) concentration. Sequestering calcium into amorphous calcium polyphosphate complexes can reduce the concentration of free calcium. The resulting reduction of both free PO(4)(3-) and free calcium lowers the relative apatite saturation, preventing formation of apatite crystals. Identified in situ within resorbing bone and mineralizing cartilage by the fluorescent reporter DAPI (4',6-diamidino-2-phenylindole), polyphosphate formation prevents apatite crystal precipitation while accumulating high local concentrations of total calcium and phosphate. When mineralization is required, tissue non-specific alkaline phosphatase, an enzyme associated with skeletal and cartilage mineralization, cleaves orthophosphates from polyphosphates. The hydrolytic degradation of polyphosphates in the calcium-polyphosphate complex increases orthophosphate and calcium concentrations and thereby favors apatite mineral formation. The correlation of alkaline phosphatase with this process may be explained by the destruction of polyphosphates in calcifying cartilage and areas of bone formation. CONCLUSIONS/SIGNIFICANCE:We hypothesize that polyphosphate formation and hydrolytic degradation constitute a simple mechanism for phosphate accumulation and enzymatic control of biological apatite saturation. This enzymatic control of calcified tissue mineralization may have permitted the development of a phosphate-based, mineralized endoskeleton that can be continually remodeled

    A Review of Phosphate Mineral Nucleation in Biology and Geobiology

    Get PDF

    Canada: Playing catch-up on phosphorus policy

    No full text
    The concept of sustainable phosphorus is studied in depth around the world, as the scientific community largely agrees that the non-renewable phosphorus reserves in the form of phosphorite ore must be used judiciously. Unfortunately, many developed countries, including Canada, have yet to implement a phosphorus management plan. The Netherlands, Germany, and Switzerland can be heralded as success stories of effective, committed, cross-sector phosphorus management. We examine factors that contributed to their success and consider how these may be transferred to Canada. We also consider Canadian geographic and research factors and contrast the Canadian policy environment and phosphorus recycling efforts with those in the EU. Finally, we analyze active Canadian and North American phosphorus interest groups and seek to determine why their collective efforts have yet to coalesce around tangible action. Canada produces phosphorus fertilizer from imported deposits of phosphate rock. Canada produces potassium fertilizer from its rich potash mines, making it a global power in nutrient production. It is imperative that Canada earns a respected leadership role in efficient global phosphorus and potassium nutrient management and recycling

    High solids density gypsum production through an improved neutralization process for zinc plant effluent

    No full text
    A common wastewater treatment process practiced by zinc production facilities is the single-stage mixing of acidic wastewaters with slaked lime, inducing the reactive precipitation of fine (∼1 mum) gypsum (CaSO4.2H 2O) and other solids with a solids density less than 10%. These solids report to a tailings pond for containment.Tailings pond life would be increased if the solids density of the precipitated solids was improved. Previous work at McGill University suggested that a staged neutralization process with solids recycle and seeded with gypsum would produce large-sized gypsum crystals with a high solids density. A continuous lab-scale process run with synthetic zinc plant effluent produced large (∼100 mum) gypsum crystals with a solids density of 50 +/- 3%.Meissner's method of calculating mean activity coefficients allowed for the calculation of gypsum solubility in mixed, strong sulphate electrolyte solutions

    Carbonate Apatite Precipitation from Synthetic Municipal Wastewater

    No full text
    An important component of phosphorite (phosphate rock) is carbonate apatite, as it is required for phosphorous fertilizer production due to its increased phosphate solubility caused by carbonate substitution in the apatite mineral lattice. High phosphate concentrations in municipal wastewater treatment plants are commonly reduced by precipitating iron phosphate by addition of iron chloride. We investigated the possibility of precipitating carbonate apatite from a potential range of phosphate concentrations that could be available from municipal wastewater treatment plants with anaerobic digestion reactors (5 mM–30 mM). Synthetic phosphate solutions at neutral pH were mixed in batch experiments with a calcium carbonate solution produced by dissolving calcite in contact with carbon dioxide gas, with and without carbonate apatite seed. Batch experiments were used to identify the carbonate apatite supersaturation ranges for homogeneous and heterogeneous nucleation, and the precipitates analyzed with Raman spectroscopy, powder X-ray diffraction, inorganic carbon coulometry, and scanning electron microscopy. Some precipitates contained carbonate weight fractions within the range reported for geological phosphate rock (1.4–6.3 wt %). The precipitates were spherical, poorly crystalline carbonate apatite, suggesting an amorphous precursor transformed to a poorly crystalline carbonate apatite without changing morphology

    Fluoride effects on bone formation and mineralization are influenced by genetics

    Get PDF
    INTRODUCTION: A variation in bone response to fluoride (F(-)) exposure has been attributed to genetic factors. Increasing fluoride doses (0 ppm, 25 ppm, 50 ppm, 100 ppm) for three inbred mouse strains with different susceptibilities to developing dental enamel fluorosis (A/J, a "susceptible" strain; SWR/J, an "intermediate" strain; 129P3/J, a "resistant" strain) had different effects on their cortical and trabecular bone mechanical properties. In this paper, the structural and material properties of the bone were evaluated to explain the previously observed changes in mechanical properties. MATERIALS AND METHODS: This study assessed the effect of increasing fluoride doses on the bone formation, microarchitecture, mineralization and microhardness of the A/J, SWR/J and 129P3/J mouse strains. Bone microarchitecture was quantified with microcomputed tomography and strut analysis. Bone formation was evaluated by static histomorphometry. Bone mineralization was quantified with backscattered electron (BSE) imaging and powder X-ray diffraction. Microhardness measurements were taken from the vertebral bodies (cortical and trabecular bones) and the cortex of the distal femur. RESULTS: Fluoride treatment had no significant effect on bone microarchitecture for any of the strains. All three strains demonstrated a significant increase in osteoid formation at the largest fluoride dose. Vertebral body trabecular bone BSE imaging revealed significantly decreased mineralization heterogeneity in the SWR/J strain at 50 ppm and 100 ppm F(-). The trabecular and cortical bone mineralization profiles showed a non-significant shift towards higher mineralization with increasing F(-) dose in the three strains. Powder X-ray diffraction showed significantly smaller crystals for the 129P3/J strain, and increased crystal width with increasing F(-) dose for all strains. There was no effect of F(-) on trabecular and cortical bone microhardness. CONCLUSION: Fluoride treatment had no significant effect on bone microarchitecture in these three strains. The increased osteoid formation and decreased mineralization heterogeneity support the theory that F(-) delays mineralization of new bone. The increasing crystal width with increasing F(-) dose confirms earlier results and correlates with most of the decreased mechanical properties. An increase in bone F(-) may affect the mineral-organic interfacial bonding and/or bone matrix proteins, interfering with bone crystal growth inhibition on the crystallite faces as well as bonding between the mineral and organic interface. The smaller bone crystallites of the 129P3/J (resistant) strain may indicate a stronger organic/inorganic interface, reducing crystallite growth rate and increasing interfacial mechanical strength
    corecore