2,269 research outputs found

    Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges

    Get PDF
    This paper presents the preliminary results on the aeroacoustic and aerodynamic performances of a NACA65-(12)10 aerofoil subjected to 12 sinusoidal leading edges. The serration patterns of these leading edges are formed by cutting into the main body of the aerofoil, instead of extending the leading edges. Any of the leading edges, when attached to the main body of the aerofoil, will always result in the same overall chord length. The experiment was mainly performed in an aeroacoustic wind tunnel facility, although a separate aerodynamic type wind tunnel was also used for the force measurements. These sinusoidal leading edges were investigated for their effectiveness in suppressing the laminar instability tonal noise (trailing edge self-noise) and turbulence–leading edge interaction noise. The largest reduction in aerofoil noise tends to associate with the sinusoidal leading edge of the largest amplitude, and smallest wavelength. However, noticeable noise increase at high frequency is also observed for this combination of serration. In terms of the aerodynamic performance, increasing the serration wavelength tends to improve the stall angles, but the lift coefficient at the pre-stall regime is generally lower than that produced by the baseline leading edge. For a sinusoidal leading edge with large serration amplitude, the effect of the reduction in “lift-generating” surface is manifested in the significant reduction of the lift coefficients and lift curve slope. The sinusoidal leading edge that produces the best performance in the post-stall regime belongs to the largest wavelength and smallest amplitude, where the lift coefficients are shown to be better than the baseline leading edge. In conclusion, large amplitude and small wavelength is beneficial for noise reduction, whilst to maintain the aerodynamic lift a small amplitude and large wavelength is preferred

    Transition Metal Complexes of a-Naphthylamine Dithiocarbamate

    Get PDF
    a-Naphthylamine dithiocarbamate and its complexes with Co(II), Ni(U), Cu(II), Ru(III) , Rh(III), Pd(II), Pt(IV), Zn(II), Cd(II) and Hg(II) have been prepared and characterized by chemical analysis, IR - and reflectance spectral studies and magnetic susceptibili ty measurements. In all these complexes the dithiocarbamato moiety acts as a chelate. The Ni(II), Cu(II) and Pd(Il) complexes have been found to be square planar while those of Ru(III), Rh(III) and Pt(IV) were proposed to be octahedral in nature. The Co(II) ion seems to have a tetrahedral geometry, unlike the other known square planar dithiocarbamato complexes of Co(II). No definite structure, however, could be proposed for Zn(II), Cd(II) and Hg(II) on the basis of limited studies

    Complexes of manganese(III) oxychlorosulphate with some nitrogen bases

    Get PDF
    717-718Manganese(III) oxychlorosulphate complexes of the type MnOSO3.Cl.L2 and MnOSO3Cl.L’ with monodentate (aniline, biphenyl amine, acetonitrile, pyridine, 3-amino-2-chloropyridine, 4-cyanopyridine, acridine) and bidentate ligands (2,2-bipyridyl and 1,10-phenanthroline) have been characterized on the basis of their elemental analysis, molar conductance, magnetic susceptibility measurements, infrared and electronic spectral data. These studies, corroborate the tridentate nature and lowering of C3v symmetry of the chlorosulphate group. The com lexes are of high-spin octahedral type as evidenced by agnetic moment values and electronic spectral bands

    Improvement of isometric dorsiflexion protocol for assessment of tibialis anterior muscle

    Get PDF
    It is important to accurately estimate the electromyogram (EMG)/force relationship of triceps surae (TS) muscle for detecting strength deficit of tibalis anterior (TA) muscle. In literature, the protocol for recording EMG and force of dorsiflexion have been described, and the necessity for immobilizing the ankle has been explained. However, there is a significant variability of the results among researchers even though they report the fixation of the ankle. We have determined that toe extension can cause significant variation in the dorsiflexion force and EMG of TS and this can occur despite following the current guidelines which require immobilizing the ankle. The results also show that there was a large increase in the variability of the force and the RMS of EMG of TS when the toes were not strapped compared with when they were strapped. Thus, with the current guidelines, where there are no instructions regarding the necessity of strapping the toes, the EMG/force relationship of TS could be incorrect and give an inaccurate assessment of the dorsiflexor TA strength. In summary, - Current methodology to estimate the dorsiflexor TA strength with respect to the TS activity, emphasizing on ankle immobilization is insufficient to prevent large variability in the measurements. - Toe extension during dorsiflexion was found to be one source of variability in estimating the TA strength. - It is recommended that guidelines for recording force and EMG from TA and TS muscles should require the strapping of the toes along with the need for immobilizing the ankle

    Resonance fluorescence from an artificial atom in squeezed vacuum

    Get PDF
    We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing up to 3.1 dB of reduction of the fluorescence linewidth below the ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum on the relative phase of the driving and squeezed vacuum fields. Our results are in excellent agreement with predictions for spectra produced by a two-level atom in squeezed vacuum [Phys. Rev. Lett. \textbf{58}, 2539-2542 (1987)], demonstrating that resonance fluorescence offers a resource-efficient means to characterize squeezing in cryogenic environments

    Digitally Programmable Fully Differential Filter

    Get PDF
    In this paper a new digitally programmable voltage mode fully differential Kerwin-Huelsman-Newcomb(KHN) filter is realized using digitally controlled CMOS fully balanced output transconductor (DCBOTA). The realized filter uses five DCBOTAs, a single resistor and two capacitors. The filter provides low-pass, high-pass and band-pass responses simultaneously. The pole-frequency of all the responses is controlled by externally applying an 8- bit digital control word. All the responses exhibit independent digital control for pole-ω0 and pole-Q. The proposed filter also offers low passive sensitivities. Non-ideal gain and parasitic associated with the actual DCBOTA is also discussed. The CMMR results for low-pass response are also included which highlight the advantage of a fully-differential operation. Exhaustive PSPICE simulation is carried out using 0.5µ technology which may be further scaled to explore state-of-the-art applications of the proposed circuit
    corecore