We present an experimental realization of resonance fluorescence in squeezed
vacuum. We strongly couple microwave-frequency squeezed light to a
superconducting artificial atom and detect the resulting fluorescence with high
resolution enabled by a broadband traveling-wave parametric amplifier. We
investigate the fluorescence spectra in the weak and strong driving regimes,
observing up to 3.1 dB of reduction of the fluorescence linewidth below the
ordinary vacuum level and a dramatic dependence of the Mollow triplet spectrum
on the relative phase of the driving and squeezed vacuum fields. Our results
are in excellent agreement with predictions for spectra produced by a two-level
atom in squeezed vacuum [Phys. Rev. Lett. \textbf{58}, 2539-2542 (1987)],
demonstrating that resonance fluorescence offers a resource-efficient means to
characterize squeezing in cryogenic environments