Indian Journal of Chemistry Vol. 28A, August 1989, pp. 717-718

Complexes of manganese(III) oxychlorosulphate with some nitrogen bases

S A A Zaidi*, Lutfullah & K S Siddiqi Division of Inorganic Chemistry, Department of Chemistry, Aligarh Muslim University, Aligarh 202 002

> Received 25 August 1988; revised and accepted 6 December 1988

Manganese(III) oxychlorosulphate complexes of the type MnOSO₃.Cl.L₂ and MnOSO₃Cl.L' with monodentate (aniline, biphenyl amine, acetonitrile, pyridine, 3-amino-2-chloropyridine, 4-cyanopyridine, acridine) and bidentate ligands (2,2-bipyridyl and 1,10-phenanthroline) have been characterized on the basis of their elemental analysis, molar conductance, magnetic susceptibility measurements, infrared and electronic spectral data. These studies, corroborate the tridentate nature and lowering of $C_{3\nu}$ symmetry of the chlorosulphate group. The complexes are of high-spin octahedral type as evidenced by magnetic moment values and electronic spectronic spectral bands.

Investigations on oxychlorosulphate complexes of transition metals are scarce^{1,2}. In this note we are reporting the preparation and characterization of some Mn(III) oxychlorosulphate adducts with mono- and bi-dentate nitrogen containing bases.

Experimental

Manganese(III) oxychlorosulphate (MnOSO₃Cl) was prepared as described³. Biphenylamine, acridine, 4-cyanopyridine, 3-amino-2-chloropyridine, 2,2'-dipyridyl and 1-10 phenanthroline (BDH, England) were used as such while aniline, pyridine and acetonitrile were dried and distilled before use.

Sulphur and chlorine were estimated gravimetrically⁴. Manganese was analysed by EDTA titration⁵. IR spectra of the complexes were obtained in mull using a Perkin-Elmer 621 spectrophotometer. Diffuse reflectance spectra were recovered on a Carl Zeiss VSU2P spectrophotometer using MgO as the standard. The magnetic susceptibilities were measured at 303 K by Gouy method using Hg[CO(SCN)₄] as the calibrant. Diamagnetic corrections were applied using Pascal's constants. Electrical conductance values of 10^{-3} M solutions of the complexes in anhydrous DMF were obtained using a Cystronics conductivity bridge type 302 at $25 \pm 0.1^{\circ}$ C. All the manipulations were carried out in a dry box flushed with dry nitrogen. A mixture of metal oxychlorosulphate (~ 20 mmol) and ligand (~ 44 mmol) was taken in anhydrous benzene and stirred for six hours at 35°C in dry nitrogen atmosphere. On cooling the contents to 10°C, solid compounds were obtained. They were vacuum-filtered and dried.

Results and discussion

The infrared spectral assignments have been made by comparing the spectra of the complexes with those of the free ligands and MnOSO₃Cl. A positive shift in symmetric SO₃ stretching $[v_1(A)]$ vibration (~ 30 to 35 cm⁻¹) and splitting of doubly degenerate modes $[v_6(E), v_5(E) \text{ and } v_4(E)]$ indicate that $C_{3\nu}$ symmetry of chlorosulphate moiety has been lowered to C_s although SO₃Cl⁻ retains its tridentate nature⁶. The lowering of chlorosulphate group symmetry is ascribed to the unsymmetrical coordination of oxygen atoms. A similar non-identical coordination of SO₃F⁻ has also been reported transition metal bisflourosulphate7. The for vMn = O mode is slightly shifted to lower wave numbers (860-890 cm⁻¹) as compared to that in $MnOSO_3Cl(910 \text{ cm}^{-1})$ due to higher electron density at the metal ion. It has been established from infrared spectral data of pyridine derivatives like 4-cyanopyridine, 3-amino-2-chloropyridine, etc., and their complexes that coordination generally occurs only through pyridyl nitrogen even in the presence of other potential coordination sites $^{8-12}$. A characteristic positive shift in out-of-plane ring vibration (16b) and in-plane ring deformation (6a and 8a) in pyridine derivatives and 2-2'-dipyridyl further support coordination through pyridyl nitrogen¹³.

Acetonitrile complex shows an increase in vC = N as a result of coordination through the nitrogen atom^{13,14}, while aniline and biphenyl amine complexes show a decrease in $vN - H^{15,16}$.

1,10-Phenanthroline and 2,2'-bipyridyl complexes show a positive shift in vC = N and vC = C. A new weak band at 1145 cm⁻¹ in the former and at 1380 cm⁻¹ in the latter has been ascribed to chelate formation with manganese ion^{17.18}. It is obvious that 1:2 complexes with monodentate ligands and 1:1 complexes with bidentate ligands would be *trans*and *cis*-octahedral respectively. The magnetic moments of the complexes fall in the range 4.75-4.80 BM corresponding to the high-spin *d*⁴ configuration.

Six-coordinated manganese(III) ion generally exhibits^{19,20} two bands in the region 16000-21000

Compound	Calc. (Obs.), %						μ _{eff.}	$\left({}^{5}E_{g} \frac{\lambda_{\max}}{5} {}^{5}T_{2g} \right)$
MnOSO ₃ Cl(An) ₂	c 38.67 (38.50)	н 3.76 (3.70	N 7.52 (7.40)	м 14.74 (14.58)	s 8.59 (8.50)	сі 9.53 (9.43)	4.78	20760 cm ⁻¹
MnOSO ₃ Cl(BPA) ₂	54.92 (54.83)	4.19 (4.10)	5.34 (5.24)	10.47 (10.38)	6.10 (5.98)	6.77 (6.70)	4.80	20710 cm ⁻¹
MnOSO ₃ Cl(ACet) ₂	17.88 (17.80)	2.24 (2.21)	10.43 (10.37)	20.45 (20.38)	11.92 (11.85)	13.23 (13.18)	4.76	20900 cm ⁻¹
MnOSO ₃ Cl(PY) ₂	34.84 (34.74)	2.90 (2.85)	8.13 (8.09)	15.94 (15.84)	9.29 (9.22)	10.31 (10.25)	4.78	20800 cm ⁻¹
$MnOSO_3Cl(4-PY)_2$	36.51 (36.49)	2.03 (2.00)	14.19 (14.11)	13.92 (13.80)	8.11 (8.01)	9.00 (8.90)	4.75	20630 cm^{-1}
MnOSO ₃ Cl(3,2-PY) ₂	27.06 (26.94)	2.26 (2.23)	12.63 (12.58)	12.38 (12.30)	7.22 (7.17)	24.01 (23.7)	4.75	20800 cm ⁻¹
MnOSO ₃ Cl(Acri) ₂	57.27 (57.20)	3.30 (3.24)	5.14 (5.04)	10.08 (9.98)	5.87 (6.44)	6.52 (6.40)	4.66	20790 cm ⁻¹
MnOSO ₃ Cl(BP)	35.03 (34.72)	2.34 (2.31)	8.17 (8.10)	16.02 (15.94)	9.34 (9.26)	10.36 (10.28)	4.80	20820 cm ⁻¹
MnOSO ₃ Cl(Phen)	39.30 (39.21)	2.18 (2.13)	7.64 (7.56)	14.98 (14.87)	8.73 (8.65)	9.69 (9.60)	4.77	20860 cm^{-1}

Table 1-Analytical, molar conductance, magnetic and spectral data of complexes

An = aniline, BPA = biphenyl amine, Acet = acetonitrile, Py = pyridine, 4-Py = 4-cyanopyridine, 3-2-Py = 3-amino-2-chloropyridine, BP = 2,2'-dipyridyl, Phen = phenanthroline, Acri = acridine.

cm⁻¹ which are assigned to spin-allowed transitions and a weak spin-forbidden transition around 10,000 cm⁻¹ whose assignment is uncertain. The reflectance spectra of these complexes show a broad spin-allowed d-d transition at 20,630-20,900 cm⁻¹ which may be assigned to ${}^{5}E_{g} \rightarrow {}^{5}T_{2g}$ transition. The other low energy band could not be observed in these complexes. These evidences suggest that the manganese(III) complexes are spin-free octahedral.

References

- 1 Singh S, Maninder & Verma R D, Indian J Chem, 23A (1984) 1038.
- 2 Zaidi S A A, Zaidi S R A, Shaheer S A & Khan T A, Indian J Chem, 26A (1987) 1053.
- 3 Siddiqi Z A, Lutfullah, Zaidi S A A & Siddiqi K S, Bull Soc chim France, 1 (1980) 228.
- 4 Vogel A I, A text book of quantitative inorganic analysis (Longmans Green, London), 1958, 339.
- 5 Reilley C N, Schmid R W & Sadek F S, *J chem Educ*, 36 (1959) 555.

- 6 Robinson E A & Ciruna J A, Can J Chem, 46 (1968) 1715.
- 7 Alleyne C S, Mailer K O & Thompson R C, *Can J Chem*, 52 (1974) 336.
- 8 Abel E W, J chem Soc, (1958) 3746.
- 9 Wilkins C J & Hasendler H M, J chem Soc, (1965) 374.
- 10 Nelson S M & Shepherd T M, Inorg Chem, 4 (1965) 813.
- 11 Hatfield W E & Morrison J C, Inorg Chem, 58 (1966) 1390.
- 12 Lever A B P, Inorg Chem, 4 (1965) 763.
- 13 Siddiqi Z A, Shakir M, Aslam M, Khan T A & Zaidi S A A, Synth React inorg met-org Chem, 13A (1983) 397.
- 14 Milne J B, Can J Chem, 48 (1970) 75.
- 15 Leeds A R, J Am chem Soc, 1 (1879) 134.
- 16 Ahuja I S, Brown D H, Nuttal R H & Sharp D W A, J inorg nucl Chem, 27 (1965) 1105.
- 17 Ferraro J R & Walker W R, Inorg Chem, 4 (1965) 1382.
- 18 Zaidi S A A & Siddiqi K S, J inorg nucl Chem, 35 (1973) 655.
- 19 Lever A B P, Lewis J & Symons R S, *J chem Soc*, (1962) 5262.
- 20 Lever A B P, Inorganic electronic spectroscopy (Elsevier, New York), (1968) 291.