186 research outputs found
Assisting High School Students with Career Indecision Using a Shortened Form of the Career Construction Interview
A shortened form of the Career Construction Interview (CCI) was used to help high school students struggling with the career decision making process. The shortened instrument is described, as well as, its use with eleventh grade high school students who had low levels of career concern and career curiosity. Students who completed the exercise reported several themes that are introduced and discussed in the article. These themes reflected that the intervention was helpful and facilitated student self understanding and career exploration. Practical applications for school counselors are discussed
Neuropeptide Y receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database
Neuropeptide Y (NPY) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Neuropeptide Y Receptors [156]) are activated by the endogenous peptides neuropeptide Y, neuropeptide Y-(3-36), peptide YY, PYY-(3-36) and pancreatic polypeptide (PP). The receptor originally identified as the Y3 receptor has been identified as the CXCR4 chemokine recepter (originally named LESTR, [137]). The y6 receptor is a functional gene product in mouse, absent in rat, but contains a frame-shift mutation in primates producing a truncated non-functional gene [83]. Many of the agonists exhibit differing degrees of selectivity dependent on the species examined. For example, the potency of PP is greater at the rat Y4 receptor than at the human receptor [61]. In addition, many agonists lack selectivity for individual subtypes, but can exhibit comparable potency against pairs of NPY receptor subtypes, or have not been examined for activity at all subtypes. [125I]-PYY or [125I]-NPY can be used to label Y1, Y2, Y5 and y6 subtypes non-selectively, while [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP may be used to label Y5 receptors preferentially (note that cPP denotes chicken peptide sequence and hPP is the human sequence)
Neuropeptide Y receptors in GtoPdb v.2023.1
Neuropeptide Y (NPY) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Neuropeptide Y Receptors [158]) are activated by the endogenous peptides neuropeptide Y, neuropeptide Y-(3-36), peptide YY, PYY-(3-36) and pancreatic polypeptide (PP). The receptor originally identified as the Y3 receptor has been identified as the CXCR4 chemokine recepter (originally named LESTR, [139]). The y6 receptor is a functional gene product in mouse, absent in rat, but contains a frame-shift mutation in primates producing a truncated non-functional gene [84]. Three-dimensional structures have been determined for subtype active receptors Y1, Y2 and Y4 [211, 114] and inactive antagonist bound Y1 and Y2 receptors [240, 210]. Many of the agonists exhibit differing degrees of selectivity dependent on the species examined. For example, the potency of PP is greater at the rat Y4 receptor than at the human receptor [62]. In addition, many agonists lack selectivity for individual subtypes, but can exhibit comparable potency against pairs of NPY receptor subtypes, or have not been examined for activity at all subtypes. [125I]-PYY or [125I]-NPY can be used to label Y1, Y2, Y5 and y6 subtypes non-selectively, while [125I][cPP(1-7), NPY(19-23), Ala31, Aib32, Gln34]hPP may be used to label Y5 receptors preferentially (note that cPP denotes chicken peptide sequence and hPP is the human sequence)
The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
Dynamic structural transitions within the seven-transmembrane bundle represent the mechanism by which G-protein-coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist-, and arrestin-bound states of Y2R were prepared by cell-free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were(13)C-labeled. NMR-signal assignment was achieved by dynamic-nuclear-polarization enhancement and the individual functional states of the receptor were characterized by monitoring(13)C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp281(6.48)of the highly conserved SWLP motif and Trp327(7.55)adjacent to the NPxxY motif. Furthermore, a conformationally preserved "cysteine lock"-Trp116(23.50)was identified
Structures of active melanocortin-4 receptorāGs-protein complexes with NDP-Ī±-MSH and setmelanotide
The melanocortin-4 receptor (MC4R), a hypothalamic master regulator of energy homeostasis and appetite, is a class A G-protein-coupled receptor and a prime target for the pharmacological treatment of obesity. Here, we present cryo-electron microscopy structures of MC4RāGs-protein complexes with two drugs recently approved by the FDA, the peptide agonists NDP-Ī±-MSH and setmelanotide, with 2.9āĆ
and 2.6āĆ
resolution. Together with signaling data from structure-derived MC4R mutants, the complex structures reveal the agonist-induced origin of transmembrane helix (TM) 6-regulated receptor activation. The ligand-binding modes of NDP-Ī±-MSH, a high-affinity linear variant of the endogenous agonist Ī±-MSH, and setmelanotide, a cyclic anti-obesity drug with biased signaling toward Gq/11, underline the key role of TM3 in ligand-specific interactions and of calcium ion as a ligand-adaptable cofactor. The agonist-specific TM3 interplay subsequently impacts receptorāGs-protein interfaces at intracellular loop 2, which also regulates the G-protein coupling profile of this promiscuous receptor. Finally, our structures reveal mechanistic details of MC4R activation/inhibition, and provide important insights into the regulation of the receptor signaling profile which will facilitate the development of tailored anti-obesity drugs
Neuropeptide Y as a risk factor for cardiorenal disease and cognitive dysfunction in chronic kidney disease: translational opportunities and challenges
Neuropeptide Y (NPY) is a 36-amino-acid peptide member of a family also including peptide YY and pancreatic polypeptide, which are all ligands to Gi/Go coupled receptors. NPY regulates several fundamental biologic functions including appetite/satiety, sex and reproduction, learning and memory, cardiovascular and renal function and immune functions. The mesenteric circulation is a major source of NPY in the blood in man and this peptide is considered a key regulator of gut-brain cross talk. A progressive increase in circulating NPY accompanies the progression of chronic kidney disease (CKD) toward kidney failure and NPY robustly predicts cardiovascular events in this population. Furthermore, NPY is suspected as a possible player in accelerated cognitive function decline and dementia in patients with CKD and in dialysis patients. In theory, interfering with the NPY system has relevant potential for the treatment of diverse diseases from cardiovascular and renal diseases to diseases of the central nervous system. Pharmaceutical formulations for effective drug delivery and cost, as well as the complexity of diseases potentially addressable by NPY/NPY antagonists, have been a problem until now. This in part explains the slow progress of knowledge about the NPY system in the clinical arena. There is now renewed research interest in the NPY system in psychopharmacology and in pharmacology in general and new studies and a new breed of clinical trials may eventually bring the expected benefits in human health with drugs interfering with this system
Transcription Factor Binding Site Polymorphism in the Motilin Gene Associated with Left-Sided Displacement of the Abomasum in German Holstein Cattle
Left-sided displacement of the abomasum (LDA) is a common disease in many dairy cattle breeds. A genome-wide screen for QTL for LDA in German Holstein (GH) cows indicated motilin (MLN) as a candidate gene on bovine chromosome 23. Genomic DNA sequence analysis of MLN revealed a total of 32 polymorphisms. All informative polymorphisms used for association analyses in a random sample of 1,136 GH cows confirmed MLN as a candidate for LDA. A single nucleotide polymorphism (FN298674:g.90T>C) located within the first non-coding exon of bovine MLN affects a NKX2-5 transcription factor binding site and showed significant associations (ORalleleā=ā0.64; ālog10Palleleā=ā6.8, ālog10Pgenotypeā=ā7.0) with LDA. An expression study gave evidence of a significantly decreased MLN expression in cows carrying the mutant allele (C). In individuals heterozygous or homozygous for the mutation, MLN expression was decreased by 89% relative to the wildtype. FN298674:g.90T>C may therefore play a role in bovine LDA via the motility of the abomasum. This MLN SNP appears useful to reduce the incidence of LDA in German Holstein cattle and provides a first step towards a deeper understanding of the genetics of LDA
The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors
The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate
- ā¦