23 research outputs found

    Nonlinear excitation of low-n harmonics in reduced magnetohydrodynamic simulations of edge-localized modes

    Full text link
    Nonlinear simulations of the early ELM phase based on a typical type-I ELMy ASDEX Upgrade discharge have been carried out using the reduced MHD code JOREK. The analysis is focused on the evolution of the toroidal Fourier spectrum. It is found that during the nonlinear evolution, linearly subdominant low-n Fourier components, in particular the n = 1, grow to energies comparable with linearly dominant harmonics. A simple model is developed, based on the idea that energy is transferred among the toroidal harmonics via second order nonlinear interaction. The simple model reproduces and explains very well the early nonlinear evolution of the toroidal spectrum in the JOREK simulations. Furthermore, it is shown for the n = 1 harmonic, that its spatial structure changes significantly during the transition from linear to nonlinearly driven growth. The rigidly growing structure of the linearly barely unstable n = 1 reaches far into the plasma core. In contrast, the nonlinearly driven n = 1 has a rigidly growing structure localized at the plasma edge, where the dominant toroidal harmonics driving the n = 1 are maximal and in phase. The presented quadratic coupling model might explain the recent experimental observation of strong low-n components in magnetic measurements [Wenninger et al., Non-linear magnetic perturbations during edge localized modes in TCV dominated by low n mode components, submitted to Nuclear Fusion]

    Testing of the new JOREK stellarator-capable model in the tokamak limit

    Full text link
    In preparation for extending the JOREK nonlinear MHD code to stellarators, a hierarchy of stellarator-capable reduced and full MHD models has been derived and tested. The derivation was presented at the EFTC 2019 conference. Continuing this line of work, we have implemented the reduced MHD model (arXiv:1907.12486) as well as an alternative model which was newly derived using a different set of projection operators for obtaining the scalar momentum equations from the full MHD vector momentum equation. With the new operators, the reduced model matches the standard JOREK reduced models for tokamaks in the tokamak limit and conserves energy exactly, while momentum conservation is less accurate than in the original model whenever field-aligned flow is present.Comment: 23 pages, 1 table, 7 figures. Submitted to Journal of Plasma Physic

    A three-dimensional reduced MHD model consistent with full MHD

    Get PDF
    Within the context of a viscoresistive magnetohydrodynamic (MHD) model with anisotropic heat transport and cross-field mass diffusion, we introduce novel three-term representations for the magnetic field (background vacuum field, field line bending and field compression) and velocity (E⃗×B⃗\vec E\times\vec B flow, field-aligned flow and fluid compression), which are amenable to three-dimensional treatment. Once the representations are inserted into the MHD equations, appropriate projection operators are applied to Faraday's law and the Navier-Stokes equation to obtain a system of scalar equations that is closed by the continuity and energy equations. If the background vacuum field is sufficiently strong and the β\beta is low, MHD waves are approximately separated by the three terms in the velocity representation, with each term containing a specific wave. Thus, by setting the appropriate term to zero, we eliminate fast magnetosonic waves, obtaining a reduced MHD model. We also show that the other two velocity terms do not compress the magnetic field, which allows us to set the field compression term to zero within the same reduced model. Dropping also the field-aligned flow, a further simplified model is obtained, leading to a fully consistent hierarchy of reduced and full MHD models for 3D plasma configurations. Finally, we discuss the conservation properties and derive the conditions under which the reduction approximation is valid. We also show that by using an ordering approach, reduced MHD equations similar to what we got from the ansatz approach can be obtained by means of a physics-based asymptotic expansion.Comment: 18 pages. This article was published in Physics of Plasma

    How well can VMEC predict the initial saturation of external kink modes in near circular tokamaks and l=2l=2 stellarators?

    Full text link
    The equilibrium code, VMEC, is used to study external kinks in low β\beta tokamaks and l=2l=2 stellarators. The applicability of the code when modelling nonlinear MHD effects is explored in an attempt to understand and predict how the initial saturation of the MHD mode depends on the external rotational transform. It is shown that helicity preserving, free boundary VMEC computations do not converge to a single perturbed solution with increasing spectral resolution. Additional constraints are therefore applied to narrow down the numerical resolution parameters appropriate for physical scans. The dependence of the modelled (4, 1) kink mode on the external rotational transform and field periodicity is then studied. While saturated states can be identified which decrease in amplitude with increasing external rotational transform, bifurcated states are found that contradict this trend. It was therefore not possible to use VMEC alone to identify the physical dependency of the nonlinear mode amplitude on the magnetic geometry. The accuracy of the VMEC solutions is nevertheless demonstrated by showing that the expected toroidal mode coupling is captured in the magnetic energy spectrum for stellarator cases. Comparing with the initial value code, JOREK, the predicted redistribution of poloidal magnetic energy from the vacuum to plasma region in VMEC is shown to be physical. This work is a first step towards using VMEC to study MHD modes in stellarator geometry.Comment: Submitted to Physics of Plasmas. The submission has been modified according to reviewer comment

    Numerical study of tearing mode seeding in tokamak X-point plasma

    Get PDF
    A detailed understanding of island seeding is crucial to avoid (N)TMs and their negative consequences like confinement degradation and disruptions. In the present work, we investigate the growth of 2/1 islands in response to magnetic perturbations. Although we use externally applied perturbations produced by resonant magnetic perturbation (RMP) coils for this study, results are directly transferable to island seeding by other MHD instabilities creating a resonant magnetic field component at the rational surface. Experimental results for 2/1 island penetration from ASDEX Upgrade are presented extending previous studies. Simulations are based on an ASDEX Upgrade L-mode discharge with low collisionality and active RMP coils. Our numerical studies are performed with the 3D, two fluid, non-linear MHD code JOREK. All three phases of mode seeding observed in the experiment are also seen in the simulations: first a weak response phase characterized by large perpendicular electron flow velocities followed by a fast growth of the magnetic island size accompanied by a reduction of the perpendicular electron velocity, and finally the saturation to a fully formed island state with perpendicular electron velocity close to zero. Thresholds for mode penetration are observed in the plasma rotation as well as in the RMP coil current. A hysteresis of the island size and electron perpendicular velocity is observed between the ramping up and down of the RMP amplitude consistent with an analytically predicted bifurcation. The transition from dominant kink/bending to tearing parity during the penetration is investigated

    MHD simulations of formation, sustainment and loss of Quiescent H-mode in the all-tungsten ASDEX Upgrade

    Full text link
    Periodic edge localized modes (ELMs) are the non-linear consequences of pressure-gradient-driven ballooning modes and current-driven peeling modes becoming unstable in the pedestal region of high confinement fusion plasmas. In future tokamaks like ITER, large ELMs are foreseen to severely affect the lifetime of wall components as they transiently deposit large amounts of heat onto a narrow region at the divertor targets. Several strategies exist for avoidance, suppression, or mitigation of these instabilities, such as the naturally ELM-free quiescent H-mode (QH-mode). In the present article, an ASDEX Upgrade equilibrium that features a QH-mode is investigated through non-linear extended MHD simulations covering the dynamics over tens of milliseconds. The equilibrium is close to the ideal peeling limit and non-linearly develops saturated modes at the edge of the plasma. A dominant toroidal mode number of n=1n=1 is found, for which the characteristic features of the edge harmonic oscillation are recovered. The saturated modes contribute to heat and particle transport preventing pedestal build-up to the ELM triggering threshold. The non-linear dynamics of the mode, in particular its interaction with the evolution of the edge safety factor is studied, which suggest a possible new saturation mechanism for the QH-mode. The simulations show good qualitative and quantitative agreement to experiments in AUG. In particular, the processes leading to the termination of QH-mode above a density threshold is studied, which results in the transition into an ELM regime. In the vicinity of this threshold, limit cycle oscillations are observed.Comment: Revised version with modifications from review process include

    Semen CD4+ T cells and macrophages are productively infected at all stages of SIV infection in macaques.

    Get PDF
    International audienceThe mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4(+) T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4(+) T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure

    Poorly processed reusable surface disinfection tissue dispensers may be a source of infection

    No full text
    Abstract Background: Reusable surface disinfectant tissue dispensers are used in hospitals in many countries because they allow immediate access to pre-soaked tissues for targeted surface decontamination. On the other hand disinfectant solutions with some active ingredients may get contaminated and cause outbreaks. We determined the frequency of contaminated surface disinfectant solutions in reusable dispensers and the ability of isolates to multiply in different formulations
    corecore