590 research outputs found

    Second harmonic generation on self-assembled GaAs/Au nanowires with thickness gradient

    Get PDF
    Here we investigated the SH generation at the wavelength of 400 nm (pump laser at 800 nm, 120 fs pulses) of a "metasurface" composed by an alternation of GaAs nano-grooves and Au nanowires capping portions of flat GaAs. The nano-grooves depth and the Au nanowires thickness gradually vary across the sample. The samples are obtained by ion bombardment at glancing angle on a 150 nm Au mask evaporated on a GaAs plane wafer. The irradiation process erodes anisotropically the surface, creating Au nanowires and, at high ion dose, grooves in the underlying GaAs substrate (pattern transfer). The SHG measurements are performed for different pump linear polarization angle at different positions on the "metasurface" in order to explore the regions with optimal conditions for SHG efficiency. The pump polarization angle is scanned by rotating a half-wave retarder plate. While the output SH signal in reflection is analyzed by setting the polarizer in s or p configuration in front of the detector. The best polarization condition for SHG is obtained in the configuration where the pump and second harmonic fields are both p polarized, and the experiments show a SH polarization dependence of the same symmetry of bulk GaAs. Thus, the presence of gold contributes only as field localization effect, but do not contributes directly as SH generator

    The ghrelin paradox in the control of equine chondrocyte function: The good and the bad

    Get PDF
    Increasing evidence suggests a role for ghrelin in the control of articular inflammatory diseases like osteoarthritis (OA). In the present study we examined the ability of ghrelin to counteract LPS-induced necrosis and apoptosis of chondrocytes and the involvement of GH secretagogue receptor (GHS-R)1a in the protective action of ghrelin. The effects of ghrelin (10-7-10-11\u202fmol/L) on equine primary cultured chondrocytes viability and necrosis in basal conditions and under LPS treatment (100\u202fng/ml) were detected by using both acridine orange/propidium iodide staining and annexin-5/propidium iodide staining. The presence of GHS-R1a on chondrocytes was detected by Western Blot. The involvement of the GHS-R1a in the ghrelin effect against LPS-induced cytotoxicity was examined by pretreating chondrocytes with D-Lys3-GHRP-6, a specific GHS-R1a antagonist, and by using des-acyl ghrelin (DAG, 10-7and 10-9\u202fmol/L) which did not recognize the GHS-R 1a. Low ghrelin concentrations reduced chondrocyte viability whereas 10-7\u202fmol/L ghrelin protects against LPS-induced cellular damage. The protective effect of ghrelin depends on the interaction with the GHS-R1a since it is significantly reduced by D-Lys3-GHRP-6. The negative action of ghrelin involves caspase activation and could be due to an interaction with a GHS-R type different from the GHS-R1a recognized by both low ghrelin concentrations and DAG. DAG, in fact, induces a dose-dependent decrease in chondrocyte viability and exacerbates LPS-induced damage. These data indicate that ghrelin protects chondrocytes against LPS-induced damage via interaction with GHS-R1a and suggest the potential utility of local GHS-R1a agonist administration to treat articular inflammatory diseases such as OA

    Ghrelin Increases Beta-Catenin Level through Protein Kinase A Activation and Regulates OPG Expression in Rat Primary Osteoblasts.

    Get PDF
    Ghrelin, by binding growth hormone secretagogue receptor (GHS-R), promotes osteoblast proliferation but the signaling mechanism of GHS-R on these cells remains unclear. Since canonical Wnt/β-catenin pathway is critically associated with bone homeostasis, we investigated its involvement in mediating ghrelin effects in osteoblasts and in osteoblast-osteoclast cross talk. Ghrelin (10(-10)M) significantly increased β-catenin levels in rat osteoblasts (rOB). This stimulatory action on β-catenin involves a specific interaction with GHS-R1a, as it is prevented by the selective GHS-R1a antagonist, D-Lys(3)-GHRP-6 (10(-7)M). The effect of ghrelin on β-catenin involves the phosphorylation and inactivation of GSK-3β via protein kinase A (PKA). Inhibition of PKA activity reduces the facilitatory action of ghrelin on β-catenin stabilization. Ghrelin treatment of rOB significantly increases the expression of osteoprotegerin (OPG), which plays an important role in the regulation of osteoclastogenesis, and this effect is blocked by D-Lys(3)-GHRP-6. Furthermore, ghrelin reduced RANKL/OPG ratio thus contrasting osteoclastogenesis. Accordingly, conditioned media from rOB treated with ghrelin decreased the number of multinucleated TRAcP+ cells as compared with the conditioned media from untreated-control rOB. Our data suggest new roles for ghrelin in modulating bone homeostasis via a specific interaction with GHSR-1a in osteoblasts with subsequent enhancement of both β-catenin levels and OPG expression

    Potential of delphinidin-3-rutinoside extracted from Solanum melongena L. as promoter of osteoblastic MC3T3-E1 function and antagonist of oxidative damage

    Get PDF
    Purpose: Increasing evidence suggests the potential use of natural antioxidant compounds in the prevention/treatment of osteoporosis. This study was undertaken to investigate the effects of purified delphinidin-3-rutinoside (D3R), isolated from Solanum melongena L., on osteoblast viability and differentiation in basal conditions and its ability to protect MC3T3-E1 cells against oxidative damage induced by tert-butyl hydroperoxide (t-BHP). Methods: MC3T3-E1 osteoblastic cells were treated with D3R (10 1211\u201310 125 M for 24 h), followed by treatment with t-BHP (250 \ub5M for 3 h). To test cell viability, MTT test was performed. Apoptotic cells were stained with Hoechst-33258 dye. Cytoskeleton rearrangement was stained with FICT-labelled phalloidin. Intracellular ROS production was measured using dichlorofluorescein CM-DCFA. The reduced glutathione to oxidized glutathione ratio (GSH/GSSG) contents was measured according to the OPT fluorimetric assay. Results: D3R (10 129 M) significantly increases viability of MC3T3-E1 cells and promotes osteoblast differentiation by increasing the expression of type I collagen, alkaline phosphatase and osteocalcin. Pre-treatment with D3R (10 129 M) significantly prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization by decreasing intracellular ROS and preventing the reduction in GSH/GSSG. D3R did not significantly modify the expression of Osteoprotegerin/RANKL system activated by t-BHP suggesting a lack of effect of D3R on osteoblast/osteoclast crosstalk. D3R protective effects against t-BHP-induced osteoblastic dysfunction were mediated by the PI3K/Akt pathway since they were completely prevented by LY294002, a PI3K/Akt specific inhibitor. Conclusions: These findings indicate that D3R protects MC3T3-E1 cells from oxidative damage and suggest the potential utility of dietary D3R supplement to prevent osteoblast dysfunction in age-related osteoporosis

    Electro-Thermal Parameters of Graphene Nano-Platelets Films for De-Icing Applications

    Get PDF
    This paper provides a study of some relevant electro-thermal properties of commercial films made by pressed graphene nano-platelets (GNPs), in view of their use as heating elements in innovative de-icing systems for aerospace applications. The equivalent electrical resistivity and thermal emissivity were studied, by means of models and experimental characterization. Macroscopic strips with a length on the order of tens of centimeters were analyzed, either made by pure GNPs or by composite mixtures of GNPs and a small percentage of polymeric binders. Analytical models are derived and experimentally validated. The thermal response of these graphene films when acting as a heating element is studied and discussed

    Control of Au nanoantenna emission enhancement of magnetic dipolar emitters by means of VO2 phase change layers

    Get PDF
    Active, ultra-fast external control of the emission properties at the nanoscale is of great interest for chip-scale, tunable and efficient nanophotonics. Here we investigated the emission control of dipolar emitters coupled to a nanostructure made of an Au nanoantenna, and a thin vanadium dioxide (VO2) layer that changes from semiconductor to metallic state. If the emitters are sandwiched between the nanoantenna and the VO2 layer, the enhancement and/or suppression of the nanostructure’s magnetic dipole resonance enabled by the phase change behavior of the VO2 layer can provide a high contrast ratio of the emission efficiency. We show that a single nanoantenna can provide high magnetic field in the emission layer when VO2 is metallic, leading to high emission of the magnetic dipoles; this emission is then lowered when VO2 switches back to semiconductor. We finally optimized the contrast ratio by considering different orientation, distribution and nature of the dipoles, as well as the influence of a periodic Au nanoantenna pattern. As an example of a possible application, the design is optimized for the active control of an Er3+ doped SiO2 emission layer. The combination of the emission efficiency increase due to the plasmonic nanoantenna resonances and the ultra-fast contrast control due to the phase-changing medium can have important applications in tunable efficient light sources and their nanoscale integration

    Bound and free waves in non-collinear second harmonic generation

    Full text link
    We analyze the relationship between the bound and the free waves in the noncollinear SHG scheme, along with the vectorial conservation law for the different components arising when there are two pump beams impinging on the sample with two different incidence angles. The generated power is systematically investigated, by varying the polarization state of both fundamental beams, while absorption is included via the Herman and Hayden correction terms. The theoretical simulations, obtained for samples which are some coherence length thick show that the resulting polarization mapping is an useful tool to put in evidence the interference between bound and free waves, as well as the effect of absorption on the interference patternComment: 10 pages, 7 figure. to be published on Optics Expres

    Ghrelin regulates proliferation and differentiation of osteoblastic cells

    Get PDF
    Abstract It has previously been reported that growth hormone secretagogues (GHS) may have a role in the regulation of bone metabolism in animals and humans. In this study we evaluated the effect of ghrelin, the endogenous ligand of GHS receptors, on the proliferation rate and on osteoblast activity in primary cultures of rat calvaria osteoblasts. In the same experiments, we compared the effects of ghrelin with those of hexarelin (HEXA) and EP-40737, two synthetic GHS with different characteristics. Both ghrelin and HEXA (10(-11)-10(-8) M) significantly stimulated osteoblast proliferation at low concentrations (10(-10) M). Surprisingly, EP-40737 demonstrated an antiproliferative effect at 10(-9)-10(-8) M, whereas lower concentrations had no effect on cell proliferation. Ghrelin and HEXA significantly increased alkaline phosphatase (ALP) and osteocalcin (OC) production. At variance with these peptides, EP-40737 did not significantly stimulate ALP and OC. The mRNA for GHS-R1a receptors and the corresponding protein were detected in calvarial osteoblasts by RT-PCR and Western blot respectively, indicating that ghrelin and GHS may bind and activate this specific receptor. We conclude that endogenous ghrelin and synthetic GHS modulate proliferation and differentiation of rat osteoblasts, probably by acting on their specific receptor

    c-Jun Regulates Eyelid Closure and Skin Tumor Development through EGFR Signaling

    Get PDF
    AbstractTo investigate the function of c-Jun during skin development and skin tumor formation, we conditionally inactivated c-jun in the epidermis. Mice lacking c-jun in keratinocytes (c-junΔep) develop normal skin but express reduced levels of EGFR in the eyelids, leading to open eyes at birth, as observed in EGFR null mice. Primary keratinocytes from c-junΔep mice proliferate poorly, show increased differentiation, and form prominent cortical actin bundles, most likely because of decreased expression of EGFR and its ligand HB-EGF. In the absence of c-Jun, tumor-prone K5-SOS-F transgenic mice develop smaller papillomas, with reduced expression of EGFR in basal keratinocytes. Thus, using three experimental systems, we show that EGFR and HB-EGF are regulated by c-Jun, which controls eyelid development, keratinocyte proliferation, and skin tumor formation
    • …
    corecore