71 research outputs found

    Genomic approaches for understanding dengue: insights from the virus, vector, and host.

    Get PDF
    The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host-pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring

    Case-area targeted interventions (CATI) for reactive dengue control: Modelling effectiveness of vector control and prophylactic drugs in Singapore.

    Get PDF
    BACKGROUND: Targeting interventions to areas that have recently experienced cases of disease is one strategy to contain outbreaks of infectious disease. Such case-area targeted interventions (CATI) have become an increasingly popular approach for dengue control but there is little evidence to suggest how precisely targeted or how recent cases need to be, to mount an effective response. The growing interest in the development of prophylactic and therapeutic drugs for dengue has also given new relevance for CATI strategies to interrupt transmission or deliver early treatment. METHODS/PRINCIPAL FINDINGS: Here we develop a patch-based mathematical model of spatial dengue spread and fit it to spatiotemporal datasets from Singapore. Simulations from this model suggest CATI strategies could be effective, particularly if used in lower density areas. To maximise effectiveness, increasing the size of the radius around an index case should be prioritised even if it results in delays in the intervention being applied. This is partially because large intervention radii ensure individuals receive multiple and regular rounds of drug dosing or vector control, and thus boost overall coverage. Given equivalent efficacy, CATIs using prophylactic drugs are predicted to be more effective than adult mosquito-killing vector control methods and may even offer the possibility of interrupting individual chains of transmission if rapidly deployed. CATI strategies quickly lose their effectiveness if baseline transmission increases or case detection rates fall. CONCLUSIONS/SIGNIFICANCE: These results suggest CATI strategies can play an important role in dengue control but are likely to be most relevant for low transmission areas where high coverage of other non-reactive interventions already exists. Controlled field trials are needed to assess the field efficacy and practical constraints of large operational CATI strategies

    Dengue Virus Inhibits Immune Responses in Aedes aegypti Cells

    Get PDF
    The ability of many viruses to manipulate the host antiviral immune response often results in complex host-pathogen interactions. In order to study the interaction of dengue virus (DENV) with the Aedes aegypti immune response, we have characterized the DENV infection-responsive transcriptome of the immune-competent A. aegypti cell line Aag2. As in mosquitoes, DENV infection transcriptionally activated the cell line Toll pathway and a variety of cellular physiological systems. Most notably, however, DENV infection down-regulated the expression levels of numerous immune signaling molecules and antimicrobial peptides (AMPs). Functional assays showed that transcriptional induction of AMPs from the Toll and IMD pathways in response to bacterial challenge is impaired in DENV-infected cells. In addition, Escherichia coli, a Gram-negative bacteria species, grew better when co-cultured with DENV-infected cells than with uninfected cells, suggesting a decreased production of AMPs from the IMD pathway in virus-infected cells. Pre-stimulation of the cell line with Gram-positive bacteria prior to DENV infection had no effect on DENV titers, while pre-stimulation with Gram-negative bacteria resulted in an increase in DENV titers. These results indicate that DENV is capable of actively suppressing immune responses in the cells it infects, a phenomenon that may have important consequences for virus transmission and insect physiology

    Human pharyngeal microbiota in age-related macular degeneration.

    Get PDF
    BACKGROUND: While the aetiology of age-related macular degeneration (AMD)-a major blinding disease-remains unknown, the disease is strongly associated with variants in the complement factor H (CFH) gene. CFH variants also confer susceptibility to invasive infection with several bacterial colonizers of the nasopharyngeal mucosa. This shared susceptibility locus implicates complement deregulation as a common disease mechanism, and suggests the possibility that microbial interactions with host complement may trigger AMD. In this study, we address this possibility by testing the hypothesis that AMD is associated with specific microbial colonization of the human nasopharynx. RESULTS: High-throughput Illumina sequencing of the V3-V6 region of the microbial 16S ribosomal RNA gene was used to comprehensively and accurately describe the human pharyngeal microbiome, at genus level, in 245 AMD patients and 386 controls. Based on mean and differential microbial abundance analyses, we determined an overview of the pharyngeal microbiota, as well as candidate genera (Prevotella and Gemella) suggesting an association towards AMD health and disease conditions. CONCLUSIONS: Utilizing an extensive study population from Singapore, our results provided an accurate description of the pharyngeal microbiota profiles in AMD health and disease conditions. Through identification of candidate genera that are different between conditions, we provide preliminary evidence for the existence of microbial triggers for AMD. Ethical approval for this study was obtained through the Singapore Health Clinical Institutional Review Board, reference numbers R799/63/2010 and 2010/585/A

    Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior

    Get PDF
    The female Aedes aegypti salivary gland plays a pivotal role in bloodmeal acquisition and reproduction, and thereby dengue virus (DENV) transmission. It produces numerous immune factors, as well as immune-modulatory, vasodilatory, and anti-coagulant molecules that facilitate blood-feeding. To assess the impact of DENV infection on salivary gland physiology and function, we performed a comparative genome-wide microarray analysis of the naïve and DENV infection-responsive A. aegypti salivary gland transcriptomes. DENV infection resulted in the regulation of 147 transcripts that represented a variety of functional classes, including several that are essential for virus transmission, such as immunity, blood-feeding, and host-seeking. RNAi-mediated gene silencing of three DENV infection-responsive genes - a cathepsin B, a putative cystatin, and a hypothetical ankyrin repeat-containing protein - significantly modulated DENV replication in the salivary gland. Furthermore, silencing of two DENV infection-responsive odorant-binding protein genes (OBPs) resulted in an overall compromise in blood acquisition from a single host by increasing the time for initiation of probing and the probing time before a successful bloodmeal. We also show that DENV established an extensive infection in the mosquito's main olfactory organs, the antennae, which resulted in changes of the transcript abundance of key host-seeking genes. DENV infection, however, did not significantly impact probing initiation or probing times in our laboratory infection system. Here we show for the first time that the mosquito salivary gland mounts responses to suppress DENV which, in turn, modulates the expression of chemosensory-related genes that regulate feeding behavior. These reciprocal interactions may have the potential to affect DENV transmission between humans

    Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation

    Get PDF
    Higher-order chromosomal organization for transcription regulation is poorly understood in eukaryotes. Using genome-wide Chromatin Interaction Analysis with Paired-End-Tag sequencing (ChIAPET), we mapped long-range chromatin interactions associated with RNA polymerase II in human cells and uncovered widespread promoter-centered intragenic, extragenic, and intergenic interactions. These interactions further aggregated into higher-order clusters, wherein proximal and distal genes were engaged through promoter-promoter interactions. Most genes with promoter-promoter interactions were active and transcribed cooperatively, and some interacting promoters could influence each other implying combinatorial complexity of transcriptional controls. Comparative analyses of different cell lines showed that cell-specific chromatin interactions could provide structural frameworks for cell-specific transcription, and suggested significant enrichment of enhancer-promoter interactions for cell-specific functions. Furthermore, genetically-identified disease-associated noncoding elements were found to be spatially engaged with corresponding genes through long-range interactions. Overall, our study provides insights into transcription regulation by three-dimensional chromatin interactions for both housekeeping and cell-specific genes in human cells

    Mosquito Immunity against Arboviruses

    No full text
    Arthropod-borne viruses (arboviruses) pose a significant threat to global health, causing human disease with increasing geographic range and severity. The recent availability of the genome sequences of medically important mosquito species has kick-started investigations into the molecular basis of how mosquito vectors control arbovirus infection. Here, we discuss recent findings concerning the role of the mosquito immune system in antiviral defense, interactions between arboviruses and fundamental cellular processes such as apoptosis and autophagy, and arboviral suppression of mosquito defense mechanisms. This knowledge provides insights into co-evolutionary processes between vector and virus and also lays the groundwork for the development of novel arbovirus control strategies that target the mosquito vector

    Additional file 2: Table S2. of Caenorhabditis elegans susceptibility to gut Enterococcus faecalis infection is associated with fat metabolism and epithelial junction integrity

    No full text
    Sequences of primers used for PCR amplification of gene-specific amplicons for cloning into the L4440 RNAi vector. RNAi constructs for candidate genes not listed here were obtained from the Ahringer RNAi library [74]. (DOCX 12 kb
    corecore