399 research outputs found

    Spatial and Topological Analysis of Urban Land Cover Structure in New Orleans Using Multispectral Aerial Image and Lidar Data

    Get PDF
    Urban land use and land cover (LULC) mapping has been one of the major applications in remote sensing of the urban environment. Land cover refers to the biophysical materials at the surface of the earth (i.e. grass, trees, soils, concrete, water), while land use indicates the socio-economic function of the land (i.e., residential, industrial, commercial land uses). This study addresses the technical issue of how to computationally infer urban land use types based on the urban land cover structures from remote sensing data. In this research, a multispectral aerial image and high-resolution LiDAR topographic data have been integrated to investigate the urban land cover and land use in New Orleans, Louisiana. First, the LiDAR data are used to solve the problems associated with solar shadows of trees and buildings, building lean and occlusions in the multispectral aerial image. A two-stage rule-based classification approach has been developed, and the urban land cover of New Orleans has been classified into six categories: water, grass, trees, imperious ground, elevated bridges, and buildings with an overall classification accuracy of 94.2%, significantly higher than that of traditional per-pixel based classification method. The buildings are further classified into regular low-rising, multi-story, mid-rise, high-rise, and skyscrapers in terms of the height. Second, the land cover composition and structure in New Orleans have been quantitatively analyzed for the first time in terms of urban planning districts, and the information and knowledge about the characteristics of urban land cover components and structure for different types of land use functions have been discovered. Third, a graph-theoretic data model, known as relational attribute neighborhood graph (RANG), is adopted to comprehensively represent geometrical and thematic attributes, compositional and structural properties, spatial/topological relations between urban land cover patches (objects). Based on the evaluation of the importance of 26 spatial, thematic and topological variables in RANG, the random forest classification method is utilized to computationally infer and classify the urban land use in New Orleans into 7 types at the urban block level: single-family residential, two-family residential, multi-family residential, commercial, CBD, institutional, parks and open space, with an overall accuracy of 91.7%

    Nonlinear optical response of Au nanorods for broadband pulse modulation in bulk visible lasers

    Get PDF
    Due to the lack of suitable optical modulators, directly generated Pr3+- and Dy3+-doped bulk visible lasers are limited in the continuous-wave operation; yet, pulsed visible lasers are only sparingly reported recently. It has been theoretically predicated that Au nanorods could modulate the visible light operation, based on the nonlinear optical response of surface plasmon resonance. Here, we demonstrate the saturable absorption properties of Au nanorods in the visible region and experimentally realized the pulsed visible lasers over the spectral range of orange (605nm), red (639nm), and deep red (721nm) with Au nanorods as the optical modulator. We show that Au nanorods have a broad nonlinear optical response and can serve as a type of broadband, low-cost, and eco-friendly candidate for optical switchers in the visible region. Our work also advocates the promise of plasmonic nanostructures for the development of pulsed lasers and other plasmonic devices

    Analysis of gut microbiota and immune-related genes during sea cucumber (<em>Apostichopus japonicus</em>) response to dietary supplementation with <em>Codonopsis pilosula</em>

    Get PDF
    The gut microbiota composition of sea cucumber (Apostichopus japonicas) was investigated using high-throughput sequencing techniques. The mRNA expression of complement component 3 and lysozyme genes was evaluated using quantitative fluorescence PCR. Sea cucumbers were fed with a basal diet (control group) and an experimental diet supplemented with Codonopsis pilosula (experimental group) for 30 days. The results showed that the alpha diversity of the gut microbiota was changed in different indices, including Chao1, the abundance-based coverage estimator, the Shannon index, and Good's coverage. Dietary C. pilosula promoted the proliferation of the Flavobacteriaceae family of the Proteobacteria phylum and reduced the relative abundance of the Verrucomicrobiaceae family of the Verrucomicrobia phylum. We concluded that dietary C. pilosula supplementation could alter the network interactions among different microbial functional groups by changing the ecological network's microbial community composition and biological evolution. A positive effect on A. japonicus immune responses in the gut was seen via increasing the mRNA expression of the complement component 3 and lysozyme genes. It seems to happen via modulating the balance in gut microbiota

    Empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of vascular smooth muscle cells

    Get PDF
    SGLT-2 inhibitors, such as empagliflozin, have been shown to reduce the occurrence of cardiovascular events and delay the progression of atherosclerosis. However, its role in atherosclerotic calcification remains unclear. In this research, ApoE−/− mice were fed with western diet and empagliflozin was added to the drinking water for 24 weeks. Empagliflozin treatment significantly alleviated arterial calcification assessed by alizarin red and von kossa staining in aortic roots and reduced the lipid levels, while had little effect on body weight and blood glucose levels in ApoE−/− mice. In vitro studies, empagliflozin significantly inhibits calcification of primary vascular smooth muscle cells (VSMCs) and aortic rings induced by osteogenic media (OM) or inorganic phosphorus (Pi). RNA sequencing of VSMCs cultured in OM with or without empagliflozin showed that empagliflozin negatively regulated the osteogenic differentiation of VSMCs. And further studies confirmed that empagliflozin significantly inhibited osteogenic differentiation of VSMCs via qRT-PCR. Our study demonstrates that empagliflozin alleviates atherosclerotic calcification by inhibiting osteogenic differentiation of VSMCs, which addressed a critical need for the discovery of a drug-based therapeutic approach in the treatment of atherosclerotic calcification

    The Perturbation of Infant Gut Microbiota Caused by Cesarean Delivery Is Partially Restored by Exclusive Breastfeeding

    Get PDF
    Early establishment of the infant gut microbiome has been attributed to various environmental factors that may influence long-term health. The aim of this study was to determine the single and combined impacts of the delivery mode, feeding pattern and postnatal antibiotic exposure on the initial establishment of infant gut microbiome at 6 weeks postpartum. A cross-sectional study was conducted at a single center in China. Fecal samples were collected from 120 infants at 6 weeks postpartum. The V3-V4 regions of 16S rRNA gene were analyzed by Illumina sequencing, and clinical information was obtained from medical records and questionnaire survey. Compared with vaginally delivered infants, the gut microbial community structure of cesarean delivered infants were significantly different (P = 0.044), in parallel with the decreased relative abundance of Bifidobacterium (P = 0.028), which contrasts with the normal gut microbial establishment. Using the vaginally delivered and exclusively breastfed (VB) infants as a reference, the comparative analysis of cesarean delivered and exclusively breastfed (CB) infants with cesarean delivered and mixed-fed (CM) infants showed that both within- and between-group UniFrac distance were significantly smaller in CB infants (P &lt; 0.001, P &lt; 0.001). LEfSe analysis showed that the relative abundances of Enterococcus, Veillonella, and Faecalibacterium were significantly different between CB and CM infants, whereas the relative abundances of those genera in VB infants were close to those of CB infants, and distinct from those of CM infants. Additionally, no significant difference of microbial composition, alpha diversity, or community structure was observed between postnatal antibiotics exposed infants and unexposed infants. In summary, delivery mode had a significant impact on the infant gut microbial community structure and composition, and the gut microbiota was disturbed in infants delivered by cesarean section. However, our study showed that this disturbance of gut microbiota in cesarean delivered infants was partially restored by exclusive breastfeeding in comparison with mixed feeding. No distinct impact of postnatal antibiotic exposure on infant gut microbiome was found at 6 weeks of age

    Interactions Between Light Intensity and Phosphorus Nutrition Affect the P Uptake Capacity of Maize and Soybean Seedling in a Low Light Intensity Area

    Get PDF
    To capture more nutrients, root systems of maize (Zea mays L.) and soybean (Glycine max L.) exhibit morphological and physiological plasticity to a localized supply of phosphorus (P). However, the mechanisms of the interaction between light intensity and P affecting root morphological and physiological alterations remain unclear. In the present study, the regulation of P uptake capacity of maize and soybean by light intensity and localized P supply was investigated in a low solar radiation area. The plants were grown under continual and disrupted light conditions with homogeneous and heterogeneous P supply. Light capture of maize and soybean increased under the disrupted light condition. Plant dry weight and P uptake were increased by more light capture, particularly when plants were grown in soil with heterogeneous P supply. Similarly, both localized P supply and disrupted light treatment increased the production of fine roots and specific root length in maize. Both homogeneous P supply and disrupted light treatment increased the malate and citrate exudation in the root of soybean. Across all of the experimental treatments, high root morphological plasticity of maize and root physiological plasticity of soybean were associated with lower P concentrations in leaves and greater sucrose concentrations in roots. It is suggested that the carbon (C), exceeded shoot growth capabilities and was transferred to roots as sucrose, which may serve as both a nutritional signal and a C-substrate for root morphological and physiological changes

    miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Get PDF
    SummaryUnderstanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC). Short-term high-fat diet (HFD) feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα), which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control

    Machine learning-based early diagnosis of autism according to eye movements of real and artificial faces scanning

    Get PDF
    BackgroundStudies on eye movements found that children with autism spectrum disorder (ASD) had abnormal gaze behavior to social stimuli. The current study aimed to investigate whether their eye movement patterns in relation to cartoon characters or real people could be useful in identifying ASD children.MethodsEye-tracking tests based on videos of cartoon characters and real people were performed for ASD and typically developing (TD) children aged between 12 and 60 months. A three-level hierarchical structure including participants, events, and areas of interest was used to arrange the data obtained from eye-tracking tests. Random forest was adopted as the feature selection tool and classifier, and the flattened vectors and diagnostic information were used as features and labels. A logistic regression was used to evaluate the impact of the most important features.ResultsA total of 161 children (117 ASD and 44 TD) with a mean age of 39.70 ± 12.27 months were recruited. The overall accuracy, precision, and recall of the model were 0.73, 0.73, and 0.75, respectively. Attention to human-related elements was positively related to the diagnosis of ASD, while fixation time for cartoons was negatively related to the diagnosis.ConclusionUsing eye-tracking techniques with machine learning algorithms might be promising for identifying ASD. The value of artificial faces, such as cartoon characters, in the field of ASD diagnosis and intervention is worth further exploring

    RNA-Seq Analyses of the Role of miR-21 in Acute Pancreatitis

    Get PDF
    Background/Aims: Our previous study demonstrated that a deficiency of microRNA 21 (miR-21) protects mice from acute pancreatitis, yet the underlying molecular networks associated with miR-21 in pancreatitis and pancreatitis-associated lung injury remain unexplored. Methods: We used next generation sequencing to analyze gene expression profiles of pancreatic tissues from wild-type (WT) and miR-21 knockout (KO) mice treated with caerulein by using a 1-day treatment protocol. The Database for Annotation, Visualization, and Integrated Discovery gene annotation tool and Ingenuity Pathway Analysis were used to analyze the molecular pathways, while quantitative real-time PCR, western blotting, and immunohistochemistry were used to explore the molecular mechanisms. Results: We identified 152 differentially expressed genes (DEGs) in pancreata between WT and KO mice treated with caerulein. Cellular biogenesis and metabolism were the major pathways affected between WT and KO mice, whereas cell death and inflammatory response discriminated between WT and KO mice under acute pancreatitis. We validated 16 DEGs, consisting of 6 upregulated genes and 10 downregulated genes, involved in pancreatic injury. In particular, the upregulation of Pias3 and downregulation of Hmgb1 in KO pancreata coincided with a reduced severity of pancreatitis. In addition, we found Hmgb1 stimulation resulted in the overexpression of miR-21 in peripheral blood mononuclear cells, and deletion of miR-21 led to a reduction of caerulein-induced acute pancreatitis-associated lung injury by repressing Hmgb1 expression. Conclusion: Our data support the hypothesis that miR-21 modulates the inflammatory response during acute pancreatitis through the upregulation of Pias3 and downregulation of Hmgb1. Our findings further underscore a role for miR-21 in the promotion of acute pancreatitis

    Aflatoxin B1 Degradation and Detoxification by Escherichia coli CG1061 Isolated From Chicken Cecum

    Get PDF
    Aflatoxin B1 (AFB1) is one of the most hazardous mycotoxins contamination in food and feed products, which leads to hepatocellular carcinoma in humans and animals. In the present study, we isolated and characterized an AFB1 degrading bacteria CG1061 from chicken cecum, exhibited an 93.7% AFB1 degradation rate by HPLC. 16S rRNA gene sequence analysis and a multiplex PCR experiment demonstrated that CG1061 was a non-pathogenic Escherichia coli. The culture supernatant of E. coli CG1061 showed an 61.8% degradation rate, whereas the degradation rates produced by the intracellular extracts was only 17.6%, indicating that the active component was constitutively secreted into the extracellular space. The degradation rate decreased from 61.8 to 37.5% when the culture supernatant was treated with 1 mg/mL proteinase K, and remained 51.3% when that treated with 100°C for 20 min. We postulated that AFB1 degradation was mediated by heat-resistant proteins. The content of AFB1 decreased rapidly when it was incubated with the culture supernatant during the first 24 h. The optimal incubation pH and temperature were pH 8.5 and 55°C respectively. According to the UPLC Q-TOF MS analysis, AFB1 was bio-transformed to the product C16H14O5 and other metabolites. Based on the results of in vitro experiments on chicken hepatocellular carcinoma (LMH) cells and in vivo experiments on mice, we confirmed that CG1061-degraded AFB1 are less toxic than the standard AFB1. E. coli CG1061 isolated from healthy chicken cerum is more likely to colonize the animal gut, which might be an excellent candidate for the detoxification of AFB1 in food and feed industry
    corecore