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Background: Studies on eye movements found that children with autism spectrum 
disorder (ASD) had abnormal gaze behavior to social stimuli. The current study 
aimed to investigate whether their eye movement patterns in relation to cartoon 
characters or real people could be useful in identifying ASD children.

Methods: Eye-tracking tests based on videos of cartoon characters and real 
people were performed for ASD and typically developing (TD) children aged 
between 12 and 60  months. A three-level hierarchical structure including 
participants, events, and areas of interest was used to arrange the data obtained 
from eye-tracking tests. Random forest was adopted as the feature selection tool 
and classifier, and the flattened vectors and diagnostic information were used as 
features and labels. A logistic regression was used to evaluate the impact of the 
most important features.

Results: A total of 161 children (117 ASD and 44 TD) with a mean age of 
39.70  ±  12.27  months were recruited. The overall accuracy, precision, and recall 
of the model were 0.73, 0.73, and 0.75, respectively. Attention to human-related 
elements was positively related to the diagnosis of ASD, while fixation time for 
cartoons was negatively related to the diagnosis.

Conclusion: Using eye-tracking techniques with machine learning algorithms 
might be  promising for identifying ASD. The value of artificial faces, such as 
cartoon characters, in the field of ASD diagnosis and intervention is worth further 
exploring.
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Introduction

Social interaction impairment is the most common clinical 
manifestation of autism spectrum disorder (ASD), which is 
characterized by verbal and nonverbal communication difficulties as 
well as stereotyped obsessive behaviors (Volkmar et  al., 2004). 
Abnormal eye contact during social situations is among the most 
noticeable manifestations of social interaction difficulties for those 
with ASD (Leekam et al., 1998; Spezio et al., 2007). Early screening 
remains one of the major challenges in ASD research. According to a 
recent meta-analysis involving 30 studies with over 60,000 ASD 
participants from 35 countries, the age for diagnosis occurred at 
approximately 60 months of age, which was late for early intervention 
to be  initiated (Van’t Hof et  al., 2021). Delayed diagnosis and 
intervention will have a negative impact on children’s prognoses and 
may lead to lifelong unpleasant outcomes, posing a significant burden 
on families and society.

Tremendous efforts have been made by clinical workers to create 
techniques for the early screening of ASD, and there are numerous 
tools available (Sappok et al., 2015). However, due to the popularity of 
existing instruments and incorrect operating methods, some missed 
diagnoses may occur in places with exceptionally large populations 
and few or no community health workers (James et al., 2014). The 
results have aroused the attention of professionals involved in the early 
detection of ASD.

Eye-tracking technology has become an increasingly important 
tool in the early screening and diagnosis of ASD in recent years. In 
contrast to electroencephalography (EEG) and magnetic resonance 
imaging (MRI), which are time-consuming and difficult to perform, 
eye-tracking is regarded as a very child-friendly tool that enables a 
variety of original designs for the investigation of visual exploration 
patterns and their underlying mechanisms. Evidence proved that 
eye-tracking techniques combined with machine learning algorithms 
might be  promising in the early and objective diagnosis of ASD 
(Kollias et al., 2021). Because of ASD children’s difficulties in social 
interaction, the complexity of social interaction is lacking, and 
eye-tracking technology can capture the distinctions between high 
and low social significance stimulation in ASD children via the 
stimulation paradigm. Studies investigating the factors influencing 
social attention in ASD found a decrease in gaze to stimuli with high 
social significance and an increase in gaze to stimuli with low social 
significance (Chita-Tegmark, 2016a; Frazier et al., 2017). For example, 
there was decreased attention to the entire face and upper face regions, 
increased attention to body regions and other unimportant or 
extraneous aspects of stimuli, and decreased attention to the lower 
face (mouth) (Chita-Tegmark, 2016b; Frazier et al., 2017).

The total time of gaze fixation with low social significance (such 
as geometric figures) has been successfully applied as a criterion to 
distinguish ASD (Shi et al., 2015; Pierce et al., 2016; Moore et al., 
2018). Multiple studies for ASD identification using machine learning 
with eye-tracking data exhibited accuracies of 67–98% in non-toddler 
groups (Kollias et al., 2021). To the best of our knowledge, there were 
no studies combining eye tracking using cartoons as stimuli with 
machine learning algorithms. Using cartoons as stimuli has several 
advantages. First, it might better capture the attention of toddlers who 
can be easily influenced by the outside environment, especially when 
they are not interested in the proposed stimuli (Masedu et al., 2022). 
Second, a recent study found that ASD children had lower levels of 

social orientation (SO) than TD children in the realistic task but 
comparable levels in the cartoon task. Nonetheless, their findings 
indicated that the cartoon task effectively captured developmental 
and adaptive delay by demonstrating numerous correlations with 
visual exploration parameters such as social prioritization, fixation 
duration, and percentage of SO (Robain et al., 2022). In addition, 
studies investigating factors that influence social attention in ASD 
found that ASD children seem to process cartoon faces in a similar 
manner that typical development (TD) children do; they tend to look 
more at cartoon characters than at other objects in cartoon situations 
(Van der Geest et al., 2002). The differences between these groups 
make it simpler for us to capture the complexities of ASD social 
interaction and then infer the difference between ASD and TD 
children in social interaction, which becomes a diagnostic signal. 
Therefore, given that developmental delay and abnormal gaze are 
early markers of ASD, we hypothesized that the cartoon task, as well 
as other minimally social stimuli, could be  a useful tool for 
early screening.

Methods

Participants

Participants were recruited between 2019 and 2021 in Changsha 
and Shenzhen, China. The inclusion criteria for children with ASD 
were as follows: (1) those aged 12–60 months; (2) those who met the 
diagnosis of ASD according to the Diagnostic and Statistical Manual 
of Mental Disorders, fifth edition (DSM-V) (American Psychological 
Association, 2009) and the Autism Diagnostic Observation Schedule 
(ADOS) confirmed the diagnosis (Lord et al., 1999); and (3) children 
with normal vision and hearing who can complete the eye movement 
tests. Those with other major mental disorders or serious physical 
health problems were excluded. Toddlers who participated when they 
were younger than 24 months old were classified as global 
developmental failures based on their performance on the Chinese 
version of the Gesell development scale (GDS) (Yang, 2016). They 
were followed and diagnosed every 3–6 months until they were 2 years 
old. TD children aged 12–60 months were recruited without gender 
restrictions. According to their parents/caregivers, they had no 
evidence of developmental disabilities or neuropsychiatric conditions.

The research was carried out in accordance with the Declaration 
of Helsinki’s ethical principles. The experimental procedures had been 
explained to all participants’ parents or caregivers, and written 
informed consent was obtained from all of them. The ethics committee 
of the Second Xiangya Hospital, Central South University, reviewed 
and approved the study (No. 2017YFC1309904).

Clinical assessments

Autism diagnostic observation schedule
ADOS is a semi-structured, standardized observational tool that 

is frequently used as a diagnostic indicator for ASD. It can accurately 
assess and diagnose ASD using a variety of play-based activities that 
focus on communication, social engagement, play, and innovative use 
of materials, as well as restricted and repetitive behaviors (González 
et al., 2019).

https://doi.org/10.3389/fnins.2023.1170951
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Meng et al. 10.3389/fnins.2023.1170951

Frontiers in Neuroscience 03 frontiersin.org

Chinese version of GDS
GDS was used to assess the development of children. It is 

composed of five domains: adaptability, gross motor, fine motor, 
language, and social–emotional responses (Yang, 2016). Participants’ 
development quotient (DQ) in each domain was calculated. Using the 
full-scale DQ, the development was classified as normal (DQ ≥ 85), 
deficient (DQ ≤ 75), or borderline (75 ~ 85). In this field, DQ in any 
single domain less than 75 was considered deficient.

Eye-tracking acquisition and processing

The eye-tracking tests were carried out in a quiet environment. A 
SensoMotoric Instruments Red500 remote eye tracker (Teltow, 
Germany) was attached to the frame of a 1,680 × 1,050 22-inch LCD 
stimulus presentation monitor. The highest spatial resolution and gaze 
position accuracy were 0.1 and 0.4, respectively. The capture range for 
eye movement was 40° horizontally (±20°) and 60° vertically (±40°). 
The tracking range of the head motion is 40 × 20 cm when the man–
machine distance is 70 cm. Throughout the experiment, two 5-point 
calibrations were obtained at fixed times.

Eight videos were played in the SMI Experiment Center. Each 
video has two large rectangular areas side by side, and the screen is 
also divided into the left and right sides. There was a cartoon character 
on the left (or right) side playing actions such as dancing, nodding, 
blowing a kiss, scratching the neck, clapping hands, bouncing, 
skipping rope, and nodding while stretching thumbs. The opposite 
side presented a real person. This person imitates the cartoon 
character. During the imitation process, the person tried to match the 
expression (smiling or no obvious expression), movement, clothing 
(clothing color and accessories), character size, and appearance (half 
body or whole body) with the cartoon pattern (Figures 1A–H). All of 
the videos were soundless, and the SMI Experiment Center software 
was created using a random playback option so that each child would 
see the eight videos in a different order.

Data organization

A three-level hierarchical structure [participants, events, and area 
of interest (AOI)] was used to arrange the data obtained by the SMI 
BeGaze program (Figure 2). Each participant had eight event data 
entities, matching one of the eight videos used in the trials. A total of 
24 data items, including fixation frequency, saccade amplitude, count, 
frequency, average latency, fixation dispersion, saccade length, saccade 
velocity, and total, average, maximum, and minimum values of 
fixation time, were recorded for each event data entity. Three events 
(nodding, clapping hands, and nodding while stretching thumbs) had 
four AOIs (cartoon, people, people’s heads, and people’s bodies) 
(Figure 3). Five events (dancing, blowing a kiss, scratching the neck, 
bouncing, and skipping rope) had two AOIs (cartoon and people) 
(Figure 4). Each AOI contained a set of 14 data items. The 14 data 
items within each AOI data entity were as follows: entry time, visible 
time (equivalent to the duration of the event in this study), net dwell 
time (time of all gazes that hit the AOI), dwell time (sum of net dwell 
time and time of saccades that hit the AOI), glance duration (sum of 
dwell time and duration of saccade entering the AOI), and diversion 
duration (sum of glance duration and duration of saccade leaving the 

AOI). In this study, gaze refers to the non-saccade movement status, 
and fixation refers to a cluster of gaze points that are close in space and 
time (60 ms).

Data analysis

We flattened each participant’s hierarchical data structure into a 
single vector with a length of 688 elements in order to thoroughly 
investigate the data items collected from the participants. Therefore, 
an array of event items and AOI entities from a single participant were 
arranged consecutively (Figure  5). Flatten vectors and diagnostic 
information were used as features and labels, and random forest (RF) 
was used as the feature selection method and classifier.

RF is a common ensemble classifier and feature-selection 
technique (Menze et al., 2009; Boulesteix et al., 2012; Biau and Scornet, 
2016). Multiple independent decision trees make up an RF. Each 
decision tree uses a random subset of the input features from a 
random subset of the training examples to fit itself during the training 
phase. The predictions of all the fitted trees were averaged to determine 
the final classification of an RF. In addition to the final choice, an RF 
also produces a significant value for each feature (entropy decrease, 
Gini impurity, etc.).

In our research, we created equal-sized autistic and healthy groups 
using the undersampling technique and constructed RF models. Gini 
impurity was utilized as the split criterion, and there were 800 decision 
trees. The ratio of training to validation cases was 7:3. The average 
accuracy, precision, and recall were obtained after 500 iterations of the 
fitting process (Powers, 2020). Additionally, we plotted the receiver 
operating characteristic curve (ROC) using all the prediction findings 
and determined the area under the curve (AUC). The undersampling 
and training-validation splits were randomized before each of the 500 
fitting processes.

A logistic regression was applied to examine if the features were 
related to the diagnoses. Forward stepwise factor selection was used 
to build the logistic regression model. Features in the RF models were 
used as independent variables in the regression model. Features were 
added to the model one at a time. A feature was chosen if statistical 
significance could be found in the feature itself or if the statistical 
significance of previously added features was unaffected by the new 
feature. Python 3.8.10, sci-kit learn 1.1.1, and the R language 4.1.1 
were used for all data organization and analysis.

Results

The characteristics of the participants are presented in Table 1. A 
total of 161 children with a mean age of 39.70 ± 12.27 months were 
recruited, and 47 of them were girls. Among them, 117 were diagnosed 
with ASD and 44 with TD. There were 91 boys and 26 girls in the ASD 
group and 23 boys and 21 girls in the TD group. The children in the 
ASD group were significantly younger than those in the TD group. 
Children in the ASD group had significantly lower scores in the 
GDDS compared to their healthy controls.

The average accuracy, precision, and recall of the 500-time fitting 
validation were 0.73, 0.73, and 0.75, respectively, and the AUC was 
0.81 (Figure 6). Randomized undersampling and the train-test split 
were performed before every fitting. The sizes of the ASD and TD 
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groups were both 44 after undersampling. The size ratio of the training 
and validation sets was 7:3.

In the logistic regression analysis, we first included age as the 
independent variable before the stepwise factor selection as 
children in the ASD and TD groups had significantly different 
ages. In addition to age, the best-fit logistic model found that nine 
features were significantly associated with an ASD diagnosis 
(Table 2). The features that were negatively associated with ASD 
were body-revisits and head-glance-duration when the cartoon 

character makes the gesture of clapping hands, cartoon-sequence 
when scratching the neck, people-glances-count when nodding 
while stretching thumbs, and people-net-dwell-time when 
dancing. The features that were positively associated with ASD 
were people-first-fixation-duration when the people are dancing, 
cartoon-sequence when the character is nodding, and cartoon-
fixation-time when blowing a kiss. In addition, the saccade 
velocity maximum has a positive correlation with ASD diagnoses 
(Table 2).

FIGURE 1

Pictures of eight videos used for eye-tracking tests, (A-H) represented different scenarios.
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Discussion

In this study, we developed a novel ASD identification framework 
for children using a specific cartoon paradigm, together with eye 
movement data for cartoon preferences and machine learning. 
We  gave children a task based on Pierce et  al. (2011), in which 
videotaped moving/dancing kids were pitted against geometric 
patterns moving repetitively. The cartoon and real human figures were 
used at the same time in the stimulus design to make sure the clothing 
and actions in the cartoon were comparable to those in the real figures. 
ASD and TD children had different visual preferences for cartoon and 
real human faces, and ASD children preferred cartoon faces much 
more than TD children (Van der Geest et al., 2002; Rosset et al., 2008). 
According to the results, our stimulus paradigm had satisfactory 
efficacy in distinguishing ASD from TD children. The ML model has 
an average accuracy, precision, and recall ASD of 0.73, 0.73, and 0.75, 
respectively. As a classifier to differentiate between ASD and TD 
children, it has an AUC of 0.81.

Similar efforts have been made by some other studies combining 
eye-tracking technology with ML algorithms for the objective 
diagnosis of ASD. For example, Liu et al. (2016) used a data-driven 
approach to extract features from face scanning data, and a support 
vector machine (SVM) was applied in the data analysis. While this 
study showed a maximum classification accuracy of 88.5%, it had a 

relatively small sample size with 29 ASD children included. Kang et al. 
(2020) recruited 77 low-functioning autistic children and 80 TD 
children to watch a random sequence of face photos. With SVM, they 
found a maximum classification accuracy of 72.5% (AUC = 0.77). 
However, all of their participants were aged between 3 and 6 years, and 
no younger children were included. Consistent with previous findings 
(Tao and Shyu, 2019; Tsuchiya et  al., 2021), our study has the 
advantage of including the largest sample size of younger children 
under the age of three. Other researchers promote the research 
ideology that early diagnosis and special education can 
be accomplished through the use of computer-aided methods based 
on EEG signals and/or imaging; however, the results in different 
studies are not quite the same. Wee et al. (2014) reported the greatest 
accuracy of 96% using SVM as a classifier in a study utilizing sMRI 
(structural magnetic resonance image). Haar et al. (2016) conducted 
a large-scale investigation with 245 ASD and 245 control subjects, 
using cortical surface area as a feature and linear discriminant analysis 
as a classifier, and reported a low accuracy of 60%. Rane et al. (2017) 
conducted the largest fMRI study, with over a thousand participants. 
A low accuracy rate of 60.56% was obtained. Wang et al. (2019) had 
over a thousand participants as well and reported a higher accuracy 
of 93.59%. Although the research findings are highly exciting, 
we prefer to use eye movement in clinical promotion because the 
clinical operability of MRI is significantly more challenging.

FIGURE 2

Three-level hierarchical structure and data item of each level.
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In the current study, we found several glancing behaviors that 
related to real humans or human parts, such as body-revisits, head-
glance-duration, people-glance-count, and people-net-dwell-time, 

were all negatively associated with ASD. In contrast, glancing 
behaviors that related to cartoon characters such as cartoon-sequence 
and cartoon-fixation-time were positively associated with ASD. These 

FIGURE 3

The four area of interests in the three events.

FIGURE 4

The two area of interests in the five events.
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behaviors had social significance. Children were more likely to have 
ASD when they were less interested in real humans or human parts 
and were more interested in cartoon characters. These results were 
similar to previous findings that adults with ASD were slow to respond 
to social stimuli, especially when there were non-social stimuli 
competing with social stimuli that were related to the narrow interests 
of ASD (Sasson and Touchstone, 2014; Wang et al., 2014). People with 
a higher degree of autistic features showed a greater interest in 
non-human social beings such as animals, robots, or cartoons 
(Atherton and Cross, 2018). One possible explanation for the cartoon 
preference of ASD children is that cartoons do not require social 
interaction. That is to say, the typicality of ASD in cartoon processing 
may be due to the damage to their social communication skills (Rosset 
et al., 2008).

Notwithstanding, we  found that people-first-fixation-duration 
when dancing was positively associated with an ASD diagnosis. The 
reason under this might be that real people had a greater range of 
motion and children were more attracted to this motion. Another 
unexpected result was that when watching the video of scratching the 
neck, ASD children showed quick attention to the cartoon area, while 
when watching the video of nodding, they showed slow attention to 
the cartoon area. We compared these two videos and found that in the 
video of nodding, the face size of the cartoon character was 

significantly larger than that of a real human. This result reminds us 
that although cartoon characters have lower social intensity than real 
people, ASD children also showed similar face avoidance when the 
face size was relatively large (Falck-Ytter and von Hofsten, 2011). This 
study utilizes non-linear machine learning models to select a series of 
indicators, which have been automatically summarized through 
multiple iterations of machine learning. These indicators possess 
strong data-driven characteristics and are not heavily reliant on the 
specific features of the selection method itself. According to our 
statistics, the predictive capabilities of each indicator decrease with the 
order of the indicator list. However, it is essential to note that this 
research utilizes a non-linear machine learning method (RF) for 
selection. While the authors attempted to provide explanations for the 
rationality of the selected indicators, their individual use or linear 
combination to construct predictive models may not necessarily 
achieve the same effect as when combined in the RF. This is 
determined by the working mechanism of the RF’s decision trees, 
where the same indicator may be  used multiple times based on 
different premises at different decision nodes.

There are several limitations to this study. First, the artificial 
undersampling may lead to an increase in false-positive judgments in 
an ecological setting, especially when the prevalence is extremely low. 
Nonetheless, the samples collected in this study differ significantly 
from the real-world prevalence of ASD (117 positive cases and 44 
negative cases). Therefore, without the use of undersampling to balance 
the samples, it would not be possible to create a model that better 
adapts to large-scale screening. Moreover, an abundance of positive 
samples might mislead the model, which is another reason why 
we ultimately decided to use balanced samples. In future research, 
these extracted indicators should be applied to fit a screening model 
more suitable for ecological settings in larger-scale samples (such as 
screening studies at the provincial level). Second, the age and 
development level among ASD and TD children were different, and 
these differences might affect the face scanning patterns (Yi et  al., 
2014). We did not consider age in the prediction model, and we just 
focused on whether there was a discrepancy in task performance. With 
a balanced age distribution and cognitive levels, incorporating age 
range as a factor in the model would further improve its performance. 
However, due to the limitations of sample size and an imbalanced age 

FIGURE 5

A feature vector consisted of flattened data structure of a participant.

TABLE 1 Clinical characteristics of participants.

Characteristics ASD 
(N  =  117)

TD 
(N  =  44)

Value of p

Female, n (%) 26 (22.2) 21 (47.7) <0.001

Age, mean (SD), months 38.7 (12.8) 46.0 (11.9) 0.002

Adaptive behavior, mean (SD) 65.7 (16.8) 94.0 (9.5) <0.001

Gross motor, mean (SD) 73.4 (15.2) 89.4 (14.6) <0.001

Fine motor, mean (SD) 71.23 (19.5) 92.0 (8.9) <0.001

Language, mean (SD) 46.9 (19.4) 98.7 (15.7) <0.001

Personal–social behavior, mean 

(SD)

59.1 (18.1) 101.6 (10.1) <0.001

ASD, autism spectrum disorder; SD, standard deviation; TD, typically developing.
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TABLE 2 The best-fit logistic regression model.

Features Estimate Std. error z value Value of p

(Intercept) 1.22 0.22 5.55 <0.001

Clapping hands: body-revisits −0.41 0.20 −2.07 0.038

Clapping hands: head-glance-duration −0.59 0.23 −2.52 0.012

Dancing: people-first-fixation-duration 1.04 0.27 3.80 0.000

Scratching the neck: cartoon-sequence −0.62 0.21 −2.95 0.003

Nodding while stretching thumbs: people-glances-count −0.95 0.24 −3.98 <0.001

Nodding: cartoon-sequence 0.54 0.21 2.58 0.010

Saccade velocity maximum 0.52 0.21 2.42 0.015

Blowing a kiss: cartoon-fixation-time 0.63 0.22 2.82 0.005

Dancing: people-net-dwell-time −0.63 0.25 −2.54 0.011

distribution, this study has not been able to achieve this step. Third, 
though we found a correlation between eye movement features and 
ASD diagnosis, considering the complex nonlinear classification 
characteristics of RF, the actual eye movement patterns of ASD children 
were still not fully clear to us, especially when facing cartoon characters. 
Fourth, even though our study included the largest sample size of 
children under the age of three, a larger sample size is still needed in 

future studies. In particular, those who are at high risk of ASD and 
younger than 2 years old are needed to validate our results and model.

Despite these limitations, the current study demonstrated that 
using eye-tracking techniques with ML algorithms might be promising 
for identifying ASD. The value of artificial faces, such as cartoon 
characters in the field of ASD diagnosis and intervention is worth 
further exploring.

FIGURE 6

Receiver operating characteristic (ROC) curve and area under curve (AUC) plotted with 500 times randomized validation results.
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