814 research outputs found
Application of a plane-stratified emission model to predict the effects of vegetation in passive microwave radiometry
This paper reports the application to vegetation canopies of a coherent model for the propagation of electromagnetic radiation through a stratified medium. The resulting multi-layer vegetation model is plausibly realistic in that it recognises the dielectric permittivity of the vegetation matter, the mixing of the dielectric permittivities for vegetation and air within the canopy and, in simplified terms, the overall vertical distribution of dielectric permittivity and temperature through the canopy. Any sharp changes in the dielectric profile of the canopy resulted in interference effects manifested as oscillations in the microwave brightness temperature as a function of canopy height or look angle. However, when Gaussian broadening of the top and bottom of the canopy (reflecting the natural variability between plants) was included within the model, these oscillations were eliminated. The model parameters required to specify the dielectric profile within the canopy, particularly the parameters that quantify the dielectric mixing between vegetation and air in the canopy, are not usually available in typical field experiments. Thus, the feasibility of specifying these parameters using an advanced single-criterion, multiple-parameter optimisation technique was investigated by automatically minimizing the difference between the modelled and measured brightness temperatures. The results imply that the mixing parameters can be so determined but only if other parameters that specify vegetation dry matter and water content are measured independently. The new model was then applied to investigate the sensitivity of microwave emission to specific vegetation parameters.</p> <p style='line-height: 20px;'><b>Keywords: </b>passive microwave, soil moisture, vegetation, SMOS, retrieva
Combining remotely sensed data using aggregation algorithms
International audienceThis paper describes a strategic approach for providing documentation of the surface energy exchange for heterogeneous land surfaces via the simultaneous, four-dimensional assimilation of several streams of remotely sensed data into a coupled land surface-atmosphere model. The basic concepts and underlying theory behind this proposed approach are presented with the intent that this will guide, facilitate, and stimulate future research focused on its practical implementation when appropriate data from the Earth Observing System (EOS) become available. The theoretical concepts that underlie the approach are derived from relationships between the values of parameters which control surface exchanges at pixel (or patch) scale and the area-average value of equivalent parameters applicable at larger, grid scale. A three-step implementation method is proposed which involves (a) estimating grid-average surface radiation fluxes from appropriate remotely sensed data; (b) absorbing these radiation flux estimates into a four-dimensional data assimilation model in which grid-average values of vegetation-related parameters are calculated from pertinent remotely sensed data using the equations that link pixel and grid scales; and (c) improving the resulting estimate of the surface energy balance-again using scale-linking equations by estimating the effect of soil-moisture availability, perhaps assuming that cloud-free pixels are an unbiased subsample of all the pixels in the grid square
Putting the "vap" into evaporation
International audienceIn the spirit of the Special Issue of HESS to which it contributes, this paper documents the origin and development of the science of natural evaporation from land surfaces over the last 30?35 years, since the symposium A View from the Watershed was held to commemorate the opening of the new Institute of Hydrology (IH) building in 1973. Important subsequent technical progress includes the ability to measure routinely the diurnal cycle of near-surface meteorological variables using automatic weather stations, and of surface energy and momentum exchanges using automated implementations of the Bowen Ratio/Energy Budget technique and the Eddy Correlation technique, along with the capability to estimate the "fetch" for which these measurements apply. These improvements have been complemented by new methods to measure the separate components of evaporation, including: the interception process using randomly relocated below-canopy gauges, transpiration fluxes from individual leaves/shoots using porometers and from plants/plant components using stem-flow gauges and soil evaporation using micro-lysimeters and soil moisture depletion methods. In recent years progress has been made in making theory-based area-average estimates of evaporation using scintillometers, and model-based area-average estimates by assembling many streams of relevant data into Land Data Assimilation Systems. Theoretical progress has been made in extending near-surface turbulence theory to accommodate the effect of the "excess" boundary layer resistance to leaf-to-air transfer of energy and mass fluxes relative to that for momentum, and to allow for observed shortcoming in stability factors in the transition layer immediately above vegetation. Controversy regarding the relative merits of multi-layer model and "big leaf" representations of whole-canopy exchanges has been resolved in favour of the latter approach. Important gaps in the theory of canopy-atmosphere interactions have been filled, including recognising the need, separately, to represent dry-canopy and wet-canopy evaporation in models and the capability to describe wet-to-dry canopy transitions as well as the ability to describe sparse vegetation canopies which only partly cover the underlying soil. There is progress in methods of estimating crop water requirements, but an important recommendation of this paper is that this progress should continue by introducing use of an effective stomatal resistance rather than crop factors. The paper draws attention to relevant theoretical insight on this issue. Progress in theoretical understanding of evaporation processes has been used in the creation of numerous Land Surface Parameterisations (LSPs), the models used to represent land-surface interaction in climate and weather forecast models, and there have been important advances in describing the behaviour of plant stomata in LSPs. A major investment over the last 25 years in conducting Large-Scale Field Experiments, the better to measure, understand and model coupled land-surface/atmosphere interactions, has resulted in improvements in the capabilities of global climate models and the ability of mesoscale meteorological models to describe the enhanced circulation resulting from different forms of land-surface heterogeneity. Progress in understanding why early equations for potential evapotranspiration can be adequate in certain conditions is reviewed. The paper concludes with recommendations for future research
Influence of vegetation on SMOS mission retrievals
International audienceUsing the proposed Soil Moisture and Ocean Salinity (SMOS) mission as a case study, this paper investigates how the presence and nature of vegetation influence the values of geophysical variables retrieved from multi-angle microwave radiometer observations. Synthetic microwave brightness temperatures were generated using a model for the coherent propagation of electromagnetic radiation through a stratified medium applied to account simultaneously for the emission from both the soil and any vegetation canopy present. The synthetic data were calculated at the look-angles proposed for the SMOS mission for three different soil-moisture states (wet, medium wet and dry) and four different vegetation covers (nominally grass, crop, shrub and forest). A retrieval mimicking that proposed for SMOS was then used to retrieve soil moisture, vegetation water content and effective temperature for each set of synthetic observations. For the case of a bare soil with a uniform profile, the simpler Fresnel model proposed for use with SMOS gave identical estimates of brightness temperatures to the coherent model. However, to retrieve accurate geophysical parameters in the presence of vegetation, the opacity coefficient (one of two parameters used to describe the effect of vegetation on emission from the soil surface) used within the SMOS retrieval algorithm needed to be a function of look-angle, soil-moisture status, and vegetation cover. The effect of errors in the initial specification of the vegetation parameters within the coherent model was explored by imposing random errors in the values of these parameters before generating synthetic data and evaluating the errors in the geophysical parameters retrieved. Random errors of 10% result in systematic errors (up to 0.5°K, 3%, and ~0.2 kg m-2 for temperature, soil moisture, and vegetation content, respectively) and random errors (up to ~2°K, ~8%, and ~2 kg m-2 for temperature, soil moisture and vegetation content, respectively) that depend on vegetation cover and soil-moisture status. Keywords: passive microwave, soil moisture, vegetation, SMOS, retrieva
The continuum of spreading depolarizations in acute cortical lesion development: Examining Leao's legacy.
A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leao's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage
Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale
Above-ground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the subkilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a “nearly-identical twin” experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA. The performance of the Noah land surface model is compared with and without assimilation of observations at hourly intervals, as well as every 2 days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root-zone soil layers (0–100 cm), despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a “true” soil moisture profile is remarkably good, regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutron observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at a relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties
Translating aboveground cosmic-ray neutron intensity to high-frequency soil moisture profiles at sub-kilometer scale
Above-ground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the subkilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a “nearly-identical twin” experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA. The performance of the Noah land surface model is compared with and without assimilation of observations at hourly intervals, as well as every 2 days. Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root-zone soil layers (0–100 cm), despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a “true” soil moisture profile is remarkably good, regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutron observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at a relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties
Research Note:<br>Derivation of temperature lapse rates in semi-arid south-eastern Arizona
International audienceEcological and hydrological modelling at the regional scale requires distributed information on weather variables, and temperature is important among these. In an area of basin and range topography with a wide range of elevations, such as south-eastern Arizona, measurements are usually available only at a relatively small number of locations and elevations, and temperatures elsewhere must be estimated from atmospheric lapse rate. This paper derives the lapse rates to estimate maximum, minimum and mean daily temperatures from elevation. Lapse rates were calculated using air temperatures at 2 m collected during 2002 at 18 locations across south-eastern Arizona, with elevations from 779 to 2512 m. The lapse rate predicted for the minimum temperature was lower than the mean environmental lapse rate (MELR), i.e. 6 K km?1, whereas those predicted for the mean and maximum daily temperature were very similar to the MELR. Lapse rates were also derived from radiosonde data at 00 and 12 UTC (5 pm and 5 am local time, respectively). The lapse rates calculated from radiosonde data were greater than those from the 2 m measurements, presumably because the effect of the surface was less. Given temperatures measured at Tucson airport, temperatures at the other sites were predicted using the different estimates of lapse rates. The best predictions of temperatures used the locally predicted lapse rates. In the case of maximum and mean temperature, using the MELR also resulted in accurate predictions. Keywords: near surface lapse rates, semi-arid climate, mean minimum and maximum temperatures, basin and range topograph
Aggregation rules for surface parameters in global models
International audienceAggregation rules are derived for calculating the effective value of parameters that determine the exchange of momentum and energy between the land surface and the atmosphere at the length scales used in General Circulation Models (GCMs). The derivation involves starting from theories that link parameters relevant at grid scale and patch scale, and then imposing the limitations necessarily present when models are operated in a free-standing, predictive mode. The application of these rules is illustrated by example for the case of the Biosphere-Atmosphere Transfer Scheme (BATS). Remotely sensed global maps of land cover classes at 1 km x 1 km pixel scale for North America, South America, and Africa are used with these new aggregation rules to calculate area-average values of parameters for the 3° x 3° grid mesh used in the National Center for Atmospheric Research Community Climate Model. There are significant differences between the parameters calculated using aggregation rules and the values selected on the basis of the dominant vegetation cover in each grid, this being the selection procedure conventionally applied with BATS
COSMOS: the COsmic-ray Soil Moisture Observing System
The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS). The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes
- …