58 research outputs found

    Changes in bacterial community of soil induced by long-term straw returning

    Get PDF
    Straw returning is an effective way to improve soil quality. Whether the bacterial community development has been changed by long-term straw returning in non-calcareous soil is not clear. In this study, the following five treatments were administered: soil without fertilizer (CK); wheat and corn straw returning (WC); wheat straw returning with 276 kg N ha−1 yr−1 (WN); manure, 60,000 kg ha−1 pig manure compost (M) and wheat and corn straw returning with 276 kg N ha−1 yr−1 (WCN). The high-throughput 16S rRNA sequencing technology was used to evaluate the bacterial communities. The results showed that the community was composed mostly of two dominant groups (Proteobacteria and Acidobacteria). Bacterial diversity increased after the application of straw and manure. Principal component analyses revealed that the soil bacterial community differed significantly between treatments. The WCN treatment showed relatively higher total soil N, available P, available K, and organic carbon and invertase, urease, cellulase activities and yield than the WC treatment. Our results suggested that application of N fertilizer to straw returning soil had significantly higher soil fertility and enzyme activity than straw returning alone, which resulted in a different bacterial community composition, Stenotrophomonas, Pseudoxanthomonas, and Acinetobacter which were the dominant genera in the WC treatment while Candidatus, Koribacter and Granulicella were the dominant genera in the WCN treatment. To summarize, wheat and maize straw returning with N fertilizer would be the optimum proposal for improving soil quality and yield in the future in non-calcareous fluro-acquic-wheat and maize cultivated soils in the North China Plain in China

    Salicylic acid regulates PIN2 auxin transporter hyper-clustering and root gravitropic growth via Remorin-dependent lipid nanodomain organization in Arabidopsis thaliana

    Get PDF
    To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments

    Cellular requirements for PIN polar cargo clustering in Arabidopsis thaliana

    Get PDF
    Cell and tissue polarization is fundamental for plant growth and morphogenesis. The polar, cellular localization of Arabidopsis PIN‐FORMED (PIN) proteins is crucial for their function in directional auxin transport. The clustering of PIN polar cargoes within the plasma membrane has been proposed to be important for the maintenance of their polar distribution. However, the more detailed features of PIN clusters and the cellular requirements of cargo clustering remain unclear. Here, we characterized PIN clusters in detail by means of multiple advanced microscopy and quantification methods, such as 3D quantitative imaging or freeze‐fracture replica labeling. The size and aggregation types of PIN clusters were determined by electron microscopy at the nanometer level at different polar domains and at different developmental stages, revealing a strong preference for clustering at the polar domains. Pharmacological and genetic studies revealed that PIN clusters depend on phosphoinositol pathways, cytoskeletal structures and specific cell‐wall components as well as connections between the cell wall and the plasma membrane. This study identifies the role of different cellular processes and structures in polar cargo clustering and provides initial mechanistic insight into the maintenance of polarity in plants and other systems

    Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods

    Get PDF
    High quality CdS nanorods are synthesized reproducibly with cadmium acetate and sulfur as precursors in trioctylphosphine solution. The morphology, crystalline form and phase composition of CdS nanorods are characterized by transmission electron microscopy (TEM), high-resolution TEM and X-ray diffraction (XRD). CdS nanorods obtained are uniform with an aspect ratio of about 5:1 and in a wurtzite structure. The influence of reaction conditions on the growth of CdS nanorods demonstrates that low precursor concentration and high reaction temperature (260 °C) are favorable for the formation of uniform CdS nanorods with 85.3% of product yield

    Adding power of artificial intelligence to situational awareness of large interconnections dominated by inverter‐based resources

    Get PDF
    Large-scale power systems exhibit more complex dynamics due to the increasing integration of inverter-based resources (IBRs). Therefore, there is an urgent need to enhance the situational awareness capability for better monitoring and control of power grids dominated by IBRs. As a pioneering Wide-Area Measurement System, FNET/GridEye has developed and implemented various advanced applications based on the collected synchrophasor measurements to enhance the situational awareness capability of large-scale power grids. This study provides an overview of the latest progress of FNET/GridEye. The sensors, communication, and data servers are upgraded to handle ultra-high density synchrophasor and point-on-wave data to monitor system dynamics with more details. More importantly, several artificial intelligence (AI)-based advanced applications are introduced, including AI-based inertia estimation, AI-based disturbance size and location estimation, AI-based system stability assessment, and AI-based data authentication

    Draft genome sequence of the mulberry tree Morus notabilis

    Get PDF
    Human utilization of the mulberry–silkworm interaction started at least 5,000 years ago and greatly influenced world history through the Silk Road. Complementing the silkworm genome sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of which are supported by transcriptome sequencing. Mulberry gene sequences appear to evolve ~3 times faster than other Rosales, perhaps facilitating the species’ spread worldwide. The mulberry tree is among a few eudicots but several Rosales that have not preserved genome duplications in more than 100 million years; however, a neopolyploid series found in the mulberry tree and several others suggest that new duplications may confer benefits. Five predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm, suggesting interactions at molecular levels in the plant–herbivore relationship. The identification and analyses of mulberry genes involved in diversifying selection, resistance and protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry plants

    Formation Of Bimetallic Dumbbell Shaped Particles With A Hollow Junction During Galvanic Replacement Reaction

    No full text
    The galvanic replacement reaction (GRR) has been shown to be an effective method to fine tune the structure of monometallic nanoparticles by controlling the precursor concentration and surface ligands. However, the structural evolution of nanoparticles is not well understood in multimetallic systems, where along with oxidation, dealloying and diffusion occur simultaneously. Here, we demonstrate that by controlling the rate of GRR in AuCu alloy nanorods, they can be transformed into either AuCu hollow rods or AuCu@Au core-shell spheroids. Interestingly, the transformation of rods into spheroids involved a critical intermediate state with a hollow junction and dumbbell shape. The formation of a hollow junction region was attributed to preferential diffusion of Cu atoms to the tips caused by the polycrystallinity and high curvature of the tips of the initial template. This structural transformation was also monitored in situ by single particle scattering spectroscopy. The coupling between the two ends of the dumbbell-shaped intermediate connected with a hollow metallic junction gives rise to additional plasmonic features compared with regular rods. Electrodynamic simulations showed that varying the dimensions of the hollow part by even one nanometer altered the plasmon resonance wavelength and lineshape drastically. This study shows that single particle plasmon resonance can be used as an exquisite tool to probe the internal structure of the nanoscale junctions

    Pt–Ni Seed-Core-Frame Hierarchical Nanostructures and Their Conversion to Nanoframes for Enhanced Methanol Electro-Oxidation

    No full text
    Pt–Ni nanostructures are a class of important electrocatalysts for polymer electrolyte membrane fuel cells. This work reports a systematic study on the reaction mechanism of the formation of Pt–Ni seed-core-frame nanostructures via the seeded co-reduction method involving the Pt seeds and selective co-reduced deposition of Pt and Ni. The resultant structure consists of a branched Pt ultrafine seed coated with a pure Ni as rhombic dodecahedral core and selective deposition of Pt on the edges of the cores. Both the type of Pt precursor and the precursor ratio of Pt/Ni are critical factors to form the resulting shape of the seeds and eventually the morphology of the nanostructures. These complex hierarchical structures can be further graved into hollow Pt–Ni alloy nanoframes using acetic acid etching method. The larger surface area and higher number of low coordinate sites of the nanoframes facilitate the electrocatalytic activity and stability of Pt–Ni alloy for methanol oxidation as compared to their solid counterparts. This study elucidates the structural and compositional evolution of the complex nanoarchitectures and their effects on the electrocatalytic properties of the nanostructures
    • 

    corecore