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Draft genome sequence of the mulberry tree
Morus notabilis
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Human utilization of the mulberry–silkworm interaction started at least 5,000 years ago and

greatly influenced world history through the Silk Road. Complementing the silkworm genome

sequence, here we describe the genome of a mulberry species Morus notabilis. In the 330-Mb

genome assembly, we identify 128 Mb of repetitive sequences and 29,338 genes, 60.8% of

which are supported by transcriptome sequencing. Mulberry gene sequences appear to

evolve B3 times faster than other Rosales, perhaps facilitating the species’ spread worldwide.

The mulberry tree is among a few eudicots but several Rosales that have not preserved

genome duplications in more than 100 million years; however, a neopolyploid series found in

the mulberry tree and several others suggest that new duplications may confer benefits. Five

predicted mulberry miRNAs are found in the haemolymph and silk glands of the silkworm,

suggesting interactions at molecular levels in the plant–herbivore relationship. The identifi-

cation and analyses of mulberry genes involved in diversifying selection, resistance and

protease inhibitor expressed in the laticifers will accelerate the improvement of mulberry

plants.
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M
ulberry is a deciduous tree and is an economically
important food crop for the domesticated silkworm,
Bombyx mori. The practice of producing valuable silk

from silkworms nourished by mulberry leaves started at least
5,000 years ago1 and helped to shape world history through
the Silk Road.

The family Moraceae comprises 37 genera with B1,100
species, including well-known plants such as mulberry, bread-
fruit, fig, banyan and upas2. Mulberry belongs to the genus Morus
with 10–13 recognized species and over a 1,000 cultivated
varieties3, which are widely planted in the Eurasian continent,
Africa and the United States. Mulberry leaf production for
silkworm uses B626,000 and 280,000 hectares of land in China
and India, respectively4. Mulberry also attracts farmers for its
delicious fruit, bark for paper production and multiple usages in
traditional oriental medicine5,6.

B. mori, a lepidopteran model system and a specialist, feeds on
mulberry leaves. The majority of known Lepidoptera species are
herbivorous and are, therefore, economically important as major
pests of agriculture and forestry. The adoption of silkworm
rearing has led to intensive studies on feeding stimulants that are
critical to the understanding of plant–insect interactions. The
genome sequencing of silkworm was completed in 2008 (refs 7,8).
However, very little genomic information is available for species
in the genus Morus. Although the genomic sequence of mulberry
will facilitate the improvement of mulberry plants, the mulberry–
silkworm genome pair will deepen our understanding of the
fundamentals in plant–herbivore adaptation.

Here we report the draft genome sequence of a mulberry
species (M. notabilis). The estimated 357-Mb genome of
M. notabilis, composed of 7 chromosome pairs, is sequenced
using Illumina technology to a 236-fold depth coverage. On the
basis of the 330-Mb assembly genome, we identify 128 Mb
repetitive sequences and 29,338 protein-coding genes. Compara-
tive genomic analyses reveal that mulberry evolved more rapidly
than other sequenced Rosales. The identification and analyses
of mulberry genes involved in resistance will accelerate the
improvement of mulberry plants. The presence of predicted
mulberry micro RNAs (miRNAs) in two tissues of the silkworm
suggest probable interactions at molecular levels between the
plant–herbivore pair.

Results
Genome sequencing and assembly. We applied a whole-genome
shotgun sequencing strategy to the mulberry species M. notabilis,
which contains seven distinct pairs of chromosomes in their
somatic cells (Fig. 1). A total of 78.34 billion high-quality bases
(236-fold genome coverage) were assembled into a 330.79-Mb
mulberry genome with a scaffold N50 length of 390,115 bp and
contig N50 length of 34,476 bp (Table 1 and Supplementary
Tables S1 and S2). There were 16,281 kb (4.9%) gaps and
314,510 kb (95.1%) non-gapped continuous sequences in the final
assembly. We selected 10.46 Gb high-quality sequenced short
reads from the library with an average insert size of 500 bp to
calculate the distribution of K-mer depth, defined as 17 bp here. A
total of 8,577,674,309 17-mer were obtained and the genome size
of M. notabilis was determined to be 357.4 Mb (Supplementary
Methods, Supplementary Fig. S1 and Supplementary Table S3).
Over 80% of the assembly was represented by 681 scaffolds
and the largest scaffold was 3,477,367 bp, with 93.96% of bases
covered by more than 20 reads (Supplementary Fig. S2) and
97% of 10,000 random expressed sequence tags (ESTs) more than
90% covered by a scaffold (Supplementary Table S4). The 35.02%
GC content of the mulberry genome is similar to that of other
eudicots (Supplementary Methods and Supplementary Fig. S3).

Repetitive sequences. A combination of both de novo repeat
prediction and homology-based search against the Repbase
library (v15.02) resulted in 127.98 Mb repetitive sequences in
the non-gapped mulberry genome (Supplementary Table S5). The
transposable element (TE) content in the mulberry genome was
probably underestimated because of the inherent limitations of
de novo sequencing in dealing with repetitive sequences. After the
exclusion of ‘N’s, according to the average coverage depth and the
total reads mapped to the repetitive-sequence (B127.7 MB) and
non-repetitive-sequence regions (B166.0 Mb) in the mulberry
genome, we estimated that there are about 18.48 Mb repetitive
sequences in the unassembled sequences. Hence, up to B47% of
the mulberry genome is composed of repetitive sequences. The
proportion of repetitive sequences in the mulberry genome is
comparable with that in apple (42%), whereas it is slightly higher
than that in poplar (35%). More than 50% of mulberry repetitive
sequences could be clearly classified into known categories, such
as Gypsy-like (6.58%) and Copia-like (6.84%) long-terminal
repeat retrotransposons. About 99.11% of TEs had a 410%
divergence rate, indicating that most mulberry TEs are relatively
ancient (Supplementary Fig. S4).

Gene prediction and functional annotation. We identified
27,085 high-confidence protein-coding loci with complete gene
structures in the mulberry genome, using 21 Gb RNA-seq data
from five tissues and 5,833 unique ESTs for gene model prediction
and validation (Supplementary Method and Supplementary
Table S6). Of the 27,085 predicted genes, 99.93% were sup-
ported by de novo gene prediction, 58.38% (15,811 genes) by
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Figure 1 | Cytological analysis of M. notabilis chromosomes.

(a) Cytological detection of M. notabilis chromosomes. (b) Chromosome

karyotyping of M. notabilis. Scale bar, 10mm.
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RNA-seq/EST and 69.94% (18,943 genes) by homology-based
approaches. More than half (52.19%) of the genes were supported
by all three methods. Including 2,253 partial genes annotated by
RNA-seq data and ESTs (Supplementary Table S7), we predicted
29,338 genes with an average mRNA length of 2,849 bp, an
average coding gene length of 1,156 bp and a mean number of
4.6 exons per gene (Supplementary Table S8). Of these genes,
60.8% were supported by RNA-seq data and 76.92% (22,566/
29,338) had homologous targets in functional databases, such as
the NCBI non-redundant protein, Swissprot, InterPro, KEGG
(Kyoto Encyclopedia of Genes and Genomes) and COG (Clusters
of Orthologous Groups; Supplementary Table S9).

On the basis of the RNA-seq data, we calculated the tissue
specificity index t, to screen for tissue-specific genes and
housekeeping genes. We found that 241, 213, 285, 360 and 404
genes specifically expressed in the root, bark, winter bud, male
flower and leaf, respectively. In comparison, 1,805 genes were
expressed constitutively in the 5 tissue/organs, including 116
encoding ribosomal proteins and 26 encoding translation
initiation factors (Supplementary Fig. S5).

Genome evolution. Comparison of the mulberry genome to a
rich collection of Rosales genome sequences, including Cannabis
sativa9, Malus domestica10 and Fragaria vesca11, offers insights
into levels and patterns of DNA-level diversity in this important
clade. A phylogenetic tree based on single-copy mulberry genes
and other 12 sequenced plants (Fig. 2) supports Moraceae as one

of the closest relatives of Rosaceae12,13. The results suggest the
speciation times of 63.5 million years ago (mya) for mulberry and
C. sativa (Cannabaceae), 88.2 mya for mulberry and apple/
strawberry (Rosaceae), and 101.6 mya for mulberry and Medicago
truncatula (Fabales)14. Ks plots suggest that mulberry (Moraceae)
and C. sativa diverged later than the divergence of apple and
strawberry in the Rosaceae family (Fig. 3).

Different gene groups of several plants were then used to
construct three phylogenetic trees (Fig. 4). First, we used single-
copy genes in the predicted mulberry gene data sets and their
best-matched ones in other species to reconstruct phylogeny
(Fig. 4a). Second, we used single-copy genes of genewise-
predicted mulberry genes to reconstruct phylogeny (Fig. 4b).
Third, we used best-matched genes in collinear positions across
different genomes to reconstruct phylogeny (Fig. 4c). In all of the
reconstructed phylogenetic trees, the branch of mulberry is longer
than those of the other species, suggesting that mulberry evolved
much (B3 times) faster than other Rosales.

To investigate the syntenic and evolutionary relationship of the
mulberry genome, without any available genetic map, in-silico
gene staining or genome zipper approach was performed against
the strawberry (F. vesca) genome sequences15. The gene density
distribution of the conserved syntenic regions against strawberry
was computed and visualized as a heatmap using a sliding
window approach (Fig. 5 and Supplementary Data 1).

Alignment of mulberry scaffolds to their best-matched grape
chromosomal regions (Fig. 6a) often revealed two additional but
less pronounced homologous regions, indicating that mulberry
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Figure 2 | Phylogenetic relationships of 13 plant species. The species are: M. notabilis, T. cacao, A. thaliana, P. trichocarpa, S. lycopersicum, V. vinifera,

P. bretschneideri, M. domestica, P. persica, F. vesca, C. sativa, M. truncatula and O. sativa. The scale bar indicates 7.5 million years. The values at the branch

points indicated the estimates of divergence time (mya) with a 95% credibility interval.

Table 1 | Global statistics of the M. notabilis genome sequencing and assembly.

Assembling
processing

Insert size
(bp)

Read length
(bp)

Raw data
(MB)

Effective data
(MB)

Sequence
coverage

N50*(bp) Total length
(bp)

Contig and scaffold 170–800 100 76,884.40 54,625.60 165.14 5,719 280,787,257
Scaffold 2,000–20,000 49 49,803.50 23,713.73 71.69 394,221 332,102,025
Gap-closure 170–800 100 76,884.40 54,625.60 — — —
Final result — — 126,687.90 78,339.33 236.82 390,115 330,791,087

*N50 refers to the size above which half of the total length of the sequence is found.
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shares the eudicot-common triplication revealed initially by the
analysis of the grape genome16. Similarly, a region of the
strawberry or cannabis genomes often has one primary and two
secondary homologous grape genome regions (Fig. 6b,c), contrary
to an earlier report of no paleopolypoidization in strawberry11.
The fact that mulberry, strawberry and cannabis have the pan-
eudicot hexaploidization as their most recent polyploidy is further
supported by the distribution of synonymous nucleotide
substitution rates of homologous genes in collinear blocks
within and between these genomes (Fig. 6d,e).

Diversifying selection. The divergent morphologies and phyto-
chemistries for which various Rosales are cultivated may reflect
diversifying selections on orthologous genes. By regression analysis
between the o, the non-synonymous (Ka) versus synonymous (Ks)
nucleotide substitution rate ratio (Ka/Ks) and the Ks values, we
estimated that 307, 338, 353 and 197 gene pairs have significantly
higher-than-average non-synonymous (Ka) versus synonymous
(Ks) nucleotide substitution rate ratios (o), indicating diversifying
selection for M. notabilis–C. sativa, M. notabilis–F. vesca,
M. notabilis–M. domestica and M. notabilis–M. truncatula
(Supplementary Data 2). Interestingly, for the subset of genes that
meet the more stringent Fisher’s exact test, diversifying selection
between 222 pairs of M. notabilis–C. sativa genes (Supplementary
Fig. S6 and Supplementary Table S10) is enriched in aging and
stress response-related genes, perhaps linked to the difference in
life expectancy of the plants. In M. notabilis–F. vesca and
M. notabilis–M. domestica comparisons, 228 and 258 diversifying
selected orthologous pairs (Supplementary Data 2) may be asso-
ciated with functional differences, for example, Morus000754
(mulberry)–MDP0000252168 (apple) and Morus009486 (mul-
berry)–MDP0000290357 (apple) involved in cutin bio-
synthetic processes may be related to the apple’s thick cuticle
(although mechanisms of cuticle biogenesis are not clear17). Parti-
cularly prominent in the mulberry–Rosaceae (apple, strawberry)

diversification are the gene pairs related to plastid components
(Supplementary Data 3 and 4), suggesting that Rubisco18 and
many plastid genes were under positive diversifying selection.

Resistance genes. The mulberry genome has 142 nucleotide-
binding site (NBS)-containing resistance (R) genes that constitute
about 0.53% of all Morus genes, comparable to that of Arabidopsis
(0.52%) and strawberry (0.58%), and lower than that of poplar
(0.86%) and apple (1.49%) (Supplementary Data 5 and
Supplementary Table S11). All of these R genes were classified
into six groups, TIR-NBS-LRR, CC-NBS-LRR, NBS-LRR, NBS,
CC-NBS and TIR-NBS, with the maximum number of 46
belonging to the CC-NBS-LRR group. The Morus genome con-
tains 127 cysteine protease (CP; 0.47%) and 129 aspartic protease
(AP; 0.48%) encoding genes, which is comparable to that of apple
(0.59%, 0.37%) and of strawberry (0.49%, 0.53%; Supplementary
Data 6 and 7, and Supplementary Table S12). Prominent among
these are 13 CP and 4 AP genes expressed in the laticifers of
mulberry (Supplementary Table S13). Interestingly, one of the
four AP genes (Morus008067) is under diversifying selection with
an apple gene (MDP0000201076; Supplementary Data 2).

Protease inhibitor genes. To alleviate insect infestation, plants
have evolved a defence mechanism to interfere with the digestive
systems of insects by expressing a number of plant protease
inhibitors (PIs). On the basis of the known PI sequences and their
conserved domains, we identified 79 PIs in the mulberry genome
(Supplementary Table S14). Twenty-two family C1 cysteine
peptidase inhibitor genes and 19 family A1/C1 serine peptidase
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inhibitor genes were annotated in the Morus genome, accounting
for half of the identified inhibitor genes.

Mulberry miRNAs identified in silkworm tissues. Adaptation of
silkworm to the seasonal growth of mulberry leaves may involve
cross-kingdom molecular signalling. By aligning the Morus
genome to various plant small RNA databases, we predicted
311 small nuclear RNAs and 223 miRNAs (Supplementary
Table S15). Five of the mulberry miRNAs, absent in the silkworm
genome, were found in the miRNA database derived from silk-
worm larval haemolymph (two), anterior-middle silk glands
(two), and posterior silk glands (one) (Supplementary Table S16).
The sequencing of small RNAs was repeated using a different
batch of silkworm haemolymph. The presence of the mulberry
miRNAs in silkworm haemolymph identified in an earlier data-
base was confirmed in the repeat experiment.

Discussion
Early studies proposed a basic chromosome number of 14 for
mulberry species19. This number is widely cited in the literature
even though later cytological studies on two M. indica species
proposed a basic chromosome number of 7 for Morus species20.
The diverse levels of polyploidization in the genus are reflected in
the wide range of chromosome numbers: 14 in M. notabilis21, 28
in M. indica or M. alba, 42 in M. bombycis and even 308 in
M. nigra22. Because of the high complexity of polyploid genomes,
the species (M. notabilis) with 14 chromosomes is chosen for
whole-genome sequencing. To verify the number of chromosomes
of the M. notabilis, somatic cells at metaphase stage in the apical
bud was used for cytological analyses. We confirmed that the cells
of M. notabilis contained 14 chromosomes. Chromosome
karyotyping clearly grouped the 14 chromosomes of M. notabilis
into seven distinct pairs, supporting the basic chromosome
number of seven proposed in the studies on M. indica20.

Phylogenetic analysis indicated that the mulberry genes form a
clade with those of other Rosales. Moraceae, conventionally
considered as belonging to Urticales, is thought to be one of the
closest relatives of Rosaceae. However, a recent report suggested
that the families Ulmaceae, Cannabaceae, Moraceae and Urtica-
ceae belong to a single clade23, named as the urticalean rosids24.
Moraceae was later classified into Rosales by the Angiosperm
Phylogeny Group III13. Our results support this reclassification.

Mulberry is rapidly evolving at the nucleotide level. It’s fast
evolving genes may have contributed to the flexibility of mulberry
to adapt to environments outside of its native range, facilitating
its spread to Europe, Africa and the United States. In contrast to
its rapid nucleotide changes, Rosales ploidies have evolved
conservatively. Mulberry, strawberry, cannabis, papaya and grape
underwent the most recent pan-eudicot hexaploidization. Wide-
spread neopolyploidy in mulberry with up to 308 (44� )
chromosomes22 and strawberry with up to 70, suggest an
intriguing scenario that these lineages may be receptive to the
benefits of a new wave of polyploidization.

Mulberry is a woody perennial tree and constant pruning is a
common practice not only to collect leaves for silkworms but also
to boost leaf production. Pruning increases risk of pest infestation
and pathogen infection; therefore, a robust defence system helps
to fend off these biotic stresses. Proteins encoded by plant R genes
allow the recognition of pathogen effectors, such as their cognate
avirulence gene products25. Most of the extensively studied plant
R genes are NBS-containing R genes26. In the mulberry genome,
we identified a total of 142 NBS-containing R genes. Mulberry is a
lactiferous plant and protein components, such as the chitinase-
like protein, in mulberry latexes are believed to be involved
in the defence system against microbes or herbivores27–29.

Cysteine proteases in the laticifers of papaya and aspartic
proteases secreted into the pitcher of Nepenthes alata30,31 have
also been shown to be toxic to herbivorous insects. Sequencing of
mulberry genome revealed 127 CP genes and 129 aspartic
protease genes. The functional studies of these genes will expand
our knowledge on mulberry defence mechanisms.

It remains unclear how the oligophagous silkworm bypasses
plant defence mechanisms that interfere with insect digestive
systems. In particular, plant PIs reduce the activity of the digestive
enzymes in the guts of herbivorous insects, resulting in serious
developmental malformations, lethality and reduced procrea-
tion32,33. Previous studies reported that plants produce more PIs
with multidomains and multimeric structures, which have
antinutritional effects on Spodoptera frugiperda34. The insect
circumvents plant PIs via inducible PI-insensitive proteases and
the degradation of plant PIs by specific proteases35,36. The
diamondback moth, Plutella xylostella, a notorious Lepidopteran
pest of cruciferous crops, inactivates mustard trypsin inhibitor 2
to break through host plant defence37. Parallel transcriptome
analysis of the silkworm–mulberry oligophagy, benefiting from
the respective genome sequences may accelerate our under-
standing of the fundamentals in plant–herbivore adaptation.

A total of five mulberry miRNAs were found in the silkworm
sequencing data. None of them seem to come from the silkworm
genome. One of them, MIR156, is abundantly expressed in the
old leaves at the vegetative growth stage of rice and has a major
role in the juvenile-to-adult transition in plants38–40. Noting that
rice MIR168a can be transferred to human and regulate the low-
density lipoprotein receptor adaptor protein 1 (ref. 41), it remains
unclear whether mulberry MIR156 in silkgland signals leaf aging
and stimulates cocoon spinning, or whether tissue-specific
presence of other mulberry MIRs has a role in coordinating
development of silkworm.

In summary, genomic information is an important resource for
modern genetic research of mulberry. The genomic features of
mulberry, such as gene families, segmental duplication, and
syntenic blocks not only enrich the data available for plant
comparative genomics but also accelerate future identification of
target genes from closely related species of the family Moraceae.
Genetic markers can be developed based on these genome
sequences for studies involving genetic map construction,
positional cloning, strain identification and marker-assisted
selection. These molecular tools and genomic techniques will
accelerate agricultural improvement. As a model system for
studies of plant–herbivore relationships, the availability of the
mulberry and silkworm genome sequences offers a unique
opportunity to gain insights into such biological partnerships
prevalent in most terrestrial habitats.

Methods
Karyotype analysis of M. notabilis C.K. Schn. Young leaves were treated with
2 mM 8-hydroxy-quinoline for 3 h at room temperature, and then fixed in 3:1
methanol/glacial acetic acid for 2 h at 4 �C. Fixed leaves were incubated with 1/
15 M KCl solution for 30 min and digested by 2.5% (W/V) cellulose (YaKult Co.,
Japan) and 2.5% (W/V) pectolyase (YaKult Co.) for 1.5 h at 37 �C. Digested leaves
were treated with ddH2O for 10 min and post-fixed in 3:1 methanol/glacial acetic
acid for 30 min at room temperature. Post-fixed leaves were smashed and two
drops of cell suspension were added on a glass slide for Giemsa staining at room
temperature for 6 h. Slides were analysed under a microscope (Olympus Cor-
poration, Japan).

DNA and RNA preparation. A wild mulberry species, M. notabilis, with a
chromosome number of 14 was used for genome sequencing. Genomic DNA used
as a template for the library construction was extracted from the winter buds
by a CTAB method. Total RNA was isolated from five tissues (root; 1-year-old
branch bark; winter bud; male flower; leaf) according to the methods of Wan
and Wilkins42, and was treated with RNase-free DNase I for 30 min at 37 �C
(New England BioLabs) to remove residual DNA. Beads with oligo(dT) were used
to isolate poly(A) mRNA. First-strand complementary DNA was synthesized using
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random hexamer primers and reverse transcriptase (Invitrogen). The second-
strand cDNA was synthesized using DNA polymerase I (New England BioLabs) in
the presence of RNase H (Invitrogen).

Genome sequencing. A whole-genome shotgun approach was used to sequence
the mulberry genome. Sequencing libraries were prepared following the manu-
facturer’s instructions (Illumina, San Diego, CA). For short-insert DNA libraries,
5 mg of genomic DNA was fragmented by nebulization with compressed nitrogen
gas. The DNA ends were blunted with an ‘A’ base to the ends of the DNA
fragments. Next, the DNA adaptors (Illumina) with a single ‘T’ base overhang at
the 30-end were ligated to the DNA fragment. We then purified the ligation pro-
ducts on a 2% agarose gel, and excised and purified gel slices for each insert size
(Qiagen Gel Extraction Kit). For long (Z2 Kb), mate-paired libraries, 10–30 mg
genomic DNA was fragmented by nebulization with compressed nitrogen gas. We
then used biotin-labelled dNTPs for polishing and gel selection for the main bands
of 2, 5 and 10 Kb. The DNA fragments were then circularized for self-ligation. The
two ends of the DNA fragment were merged together and the linear DNA frag-
ments were digested by DNA exonuclease. The circularized DNA was fragmented
again, followed by enrichment of the ‘merged ends’ with magnetic beads using
biotin and streptavidin interaction, then the ends were blunted, and ‘A’ base and
adaptors were added. We followed the manufacturer’s instructions (Illumina) for
paired-end (PE) sequencing runs by the following workflow: cluster generation,
template hybridization, isothermal amplification, linearization, blocking,
denaturing and hybridization of sequencing primers. The base-calling pipeline
(SolexaPipeline-0.3) was used to obtain sequences from the raw fluorescent images.

Genome assembly. Before de novo assembly, we filtered the low-quality data by
the following five steps: (1) trim the low-quality bases on both 50- and 30-end of
each read according to quality reports from Hiseq2000 pipeline; (2) discard those
reads with Ns410% of the read length; (3) remove those reads when the total low-
quality bases (Qo8) was 450% of the read length; (4) discard the reads con-
taminated by adapters; and (5) remove duplicated reads caused by PCR during
library construction. SOAPdenovo is a genome assembler developed in BGI-
Shenzhen and this software preformed de Bruijn graph algorithm assemblies in a
stepwise strategy43. We first assembled short reads from fragmented small insert-
size (o1 kb) libraries into contigs using 49-kmers. We then realigned all the reads
to contig sequences with 41-kmers and compiled all aligned reads to the available
contigs. According to the PE information, we joined the contigs into scaffolds by
seven steps from 170 bp insert-size libraries to 20 kb insert-size libraries. To fill the
gaps in scaffolds, we collected the PE reads, one of which uniquely aligned to a
contig and the other located in gaps, to repeat a local assembly. The intra-scaffold
gaps were filled by local assembly using the reads from a read pair with one end
uniquely aligned to a contig and the other in a gap.

TEs and repetitive DNA. To predict the TEs in the mulberry genome, we first
constructed a TE library with RepeatModeler (version 1.0.3, http://www.re-
peatmasker.org/RepeatModeler.html), RepeatScout44 (version 1.0.5, http://
bix.ucsd.edu/repeatscout/) and Piler45 (version 1.0, http://www.drive5.com/piler/),
and then performed de novo prediction of TEs on it using RepeatMasker (version
3.2.9, http://www.repeatmasker.org/)46. RepeatMasker and ProteinMask (version
3.0) were also used to find known TEs with a TE library composed of Repbase47

(version 15.02, http://www.girinst.org/repbase/) and eudicot TEs from TIGR
(version 3.0, http://plantta.jcvi.org)48. Tandem Repeats Finder (version 4.04, http://
tandem.bu.edu/trf/trf.html) was used to identify tandem repeats. Simple repeats,
satellite sequences and low-complexity repeats were identified by RepeatMasker
with the option of ‘-noint’49. The classified TE families in the M. notabilis genome
were aligned to the consensus sequences in the Repbase library (v15.02) and the
sequence divergence rates of TEs were determined.

Gene prediction and annotation. Three methods were used to predict the mul-
berry genes: a homology-based method, a de novo method and an EST/transcript-
based method. High-confidence set of genes were predicted by both homology-
based and de novo methods. For the annotation of the mulberry protein-coding
genes, we searched the nucleotide sequences of 27,085 high-confidence genes
against NCBI, KEGG, COG and Swissport databases with a minimal e-value of
1e� 5. Protein domains and functions of predicted 27,085 amino acid sequences of
mulberry were annotated with Iprscan (v4.4.1).

RNA-seq and EST sequencing. The cDNA libraries were prepared and sequenced
according to Illumina’s protocols. TopHat (v1.3.3) was used to align these RNA-seq
reads to the mulberry genome. The reads per kb per million reads values were
calculated to measure the gene expression levels of the five tissues, and the tissue
specificity index t was computed to identify the specific expressed genes in
each tissue. For EST sequencing, RNA samples from the same five tissues were
combined for cDNA synthesis using Creator SMART cDNA Kit (Clontech). A
normalized cDNA library was constructed with Trimmer-Director kit (Evrogen).
Ten thousand randomly chosen clones from the normalized library were sequenced
using ABI3730 (Applied Biosystem).

Non-coding RNA genes. The transfer RNAs in the M. notabilis genome were
found using tRNAscan-SE (v1.23) with the ‘eukaryotes’ option50. The M. notabilis
genome was aligned to plant ribosomal RNAs with BLASTN (e-value, 1e� 5), and
rRNAs with sequence identity 485% and heat shock protein length longer than
50 bp were recorded. The M. notabilis genome was aligned to the Rfam database
(v 9.1) with BLASTN (e-value, 1). The raw output was further analysed by the
INFERNAL software, which was used to predict miRNA and small nuclear RNA by
searching DNA sequence databases owing to the RNA structure and sequence
similarities.

In-silico gene staining. We used BLASTP (e-value, 1e� 5) to identify reciprocal
best-hit orthologous gene pairs between mulberry and strawberry. This reciprocal
best-hit matrix and the orthologous gene pairs were used to further define the
syntenic blocks between two species in the MCscan pipeline. The scaffolds of
mulberry with syntenic blocks were aligned together according to the syntenic
order in the strawberry linkage groups using Genome Zipper15. The distributions
of gene density and orthologous gene density were calculated using a 500-kb sliding
window approach.

Identification of mulberry miRNAs in silkworm tissues. The small RNA was
extracted from 12 ml of silkworm haemolymph (collected from the fifth instar
day-5 larvae) using mirVana PARIS kit (Ambion, USA). The sequencing of small
RNA in haemolymph was conducted following the procedure describe by Liu51.
The sequences of small RNA in the anterior-middle and posterior silk glands were
downloaded from http://www.ncbi.nlm.nih.gov/gds?term=GSE17965. The small
RNA sequenced data of three silkworm tissues were used as queries to search
against mulberry-predicted miRNAs by BLASTN without mismatch. The
sequences aligned to silkworm genome, rRNAs and tRNAs were filtered out.

Phylogenetic tree and determine the speciation time. Single-copy genes from
13 plant species were used to reconstruct a phylogenetic tree based on the max-
imum likelihood method. Orthologous gene pairs had been determined by top-
ranked BLAST hits in each other with an e-value 1e� 10. The Ks value52 between
the orthologous pairs were calculated by the yn00 programme in PAML package53.
The speciation time base on Ks value was dated by the equation T¼Ks/2l with
l¼ 6.1� 10� 9 (ref. 54). Orthologous gene pairs likely to be under positive
(diversifying) selection between mulberry and each of the other four plants were
determined by regression analysis between Ka and Ks values based on a 95%
prediction interval range55. Gene pairs with o-values greater than the prediction
interval upper limit were considered to show evidence of positive selection. Gene
Ontology groups in which the high omega pairs were significantly included were
determined by BLAST2GO56 with a cut-off P-valueo0.05 using Fisher’s exact test.

Inference of gene collinearity. We inferred gene collinearity with MCSCAN57,
a multiple-chromosome alignment tool, complemented by analyses using
COLINEARSCAN58, a pairwise-chromosome alignment tool. The inferred
collinear genes were used to perform phylogenetic and evolutionary analyses.

Dating evolutionary event. We used collinear genes between plants, and within-
each-plant homologues with high confidence, to infer evolutionary events. For
example, collinear genes between mulberry scaffolds are likely to have resulted
from ancient polyploidization event(s) if present; and collinear genes between
mulberry and grape are likely to have resulted from a divergence of the two species.
The synonymous nucleotide substitution rates (Ks) were calculated by using Nei–
Gojobori approach52 implemented in PAML53. The distributions of Ks values were
drawn to infer the relative time of evolutionary events.

Homologous dotplotting. We used predicted gene sets that are described above
and a gene data set predicted by Genewise59 in the analysis. Genome sequences and
annotations of grape, apple, strawberry and cannabis were downloaded from online
databases, and the most up-to-date versions till October 2012 were used in the
analyses. In comparison with genomes with available pseudochromosomes, we
used protein–protein searches using BLASTP to reveal putative homologous genes,
and the output was used to make dotplot; genes were placed along with their
chromosomal order as coordinates. When a comparison was done involving
genomes (for example, cannabis and mulberry) without available pseudochromo-
somes, that is, those with unanchored scaffolds, gene coding DNA sequences from
a genome sequences with pseudochromosomes (for example, grape) were searched
against the cannabis and mulberry genomes using BLASTN, and hits on the
pseudochromosomes were located. The BLASTN output was used to produce
dotplots. To detect the genome duplication events, the unanchored scaffolds were
linked to their best-matched grape genomic regions on the putative pseudochro-
mosomes. The putative pseudochromosomal regions of mulberry and cannabis
were identified this way. A corresponding grape region would have two matched
regions clustered together in the dotplot.
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Data used in this study. The genome data were downloaded from the following
websites and are associated with the accession codes provided.

Arabidopsis thaliana (TAIR9), ftp://ftp.arabidopsis.org/Genes/TAIR9_gen-
ome_release/, GCA_000001735.1.

C. sativa, http://genome.ccbr.utoronto.ca/downloads.html, GCA_000230575.1.
Carica papaya (version 1th), ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v5.0/

Cpapaya/, GCA_000150535.1.
Cucumis sativus (version 1th) http://cucumber.genomics.org.cn/page/cucum-

ber/download.jsp, GCA_000004075.1.
F. vesca (version 1.1), http://www.rosaceae.org/species/fragaria/fragaria_vesca/

genome_v1.1, GCA_000184155.1.
Glycine max (version 1.0), ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v5.0/

Gmax/, GCA_000004515.1.
M. domestica (version 1.0), http://genomics.research.iasma.it/index.html,

GCA_000148765.2.
M. truncatula, ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v8.0/Mtruncatula/,

GCA_000219495.1.
Populus trichocarpa (version 5.0), ftp://ftp.jgi-psf.org/pub/compgen/phyto-

zome/v5.0/Ptrichocarpa/, GCA_000002775.1.
Prunus persica, ftp://ftp.jgi-psf.org/pub/compgen/phytozome/v8.0/Ppersica/,

GCA_000346465.1.
Pyrus bretschneideri, http://peargenome.njau.edu.cn:8004/default.asp?d=1&m=1,

GCA_000315295.1.
Theobroma cacao (version 1.0), http://cocoagendb.cirad.fr/gbrowse/down-

load.html, GCA_000403535.1.
Vitis vinifera, http://www.genoscope.cns.fr/externe/Download/Projets/Pro-

jet_ML/data/12X/, GCA_000003745.2.
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56. Götz, S. et al. High-throughput functional annotation and data mining with the
Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

57. Tang, H. et al. Unraveling ancient hexaploidy through multiply-aligned
angiosperm gene maps. Genome Res. 18, 1944–1954 (2008).

58. Wang, X. et al. Statistical inference of chromosomal homology based on gene
colinearity and applications to Arabidopsis and rice. BMC Bioinformatics 7, 447
(2006).

59. Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res.
14, 988–995 (2004).

Acknowledgements
This project was funded by research grants from the National Hi-Tech Research and
Development Program of China (No. 2013AA100605-3), the ‘111’ Project(B12006),
the Science Fund for Distinguished Young Scholars of Chongqing (Grant No.
cstc2011jjjq0010), the grant for National Non-profit Research Institutions to Research
Institute of Forestry, CAF, earmarked fund for Modern Agro-Industry Technology
Research System of Zhejiang Province, China, Modern Agriculture Industry Technology
System Construction Project (Sericulture), Guangdong Natural Science Foundation
Research Team project (No. 9351064001000002), Silkworm and Mulberry Resistance
Breeding Center of the State Key Laboratory of Silkworm Genome Biology
(No. 2012B090600049) and the Chong Qing Science & Technology Commission
(No. cstc2012jjys80001).

Author contributions
N.H., C.Z., X.Q., Shancen Z. and Y.T. have contributed equally to this paper. N.H., D.J.,
S.L., M.L., Q.X. and Z.X. coordinated the project; C.Z., Y.T., Shancen Z., C.G. and D.L.
performed genome and transcriptome sequencing; Tae-Ho L., Xiyin W., Q.C., R.H., X.T.,
G.Y., D.L., Jinpeng W. and Tao L. performed evolution analyses; Y.X., N.H. and Xiling
W. contributed to the cytological analyses; X.Q., Q.F., Tian L., A.Z., Q.Z., B.M., L.J., J.L.,
P.S., L.F., J.S., J.Z., C.W., Q.S., Q.W., K.Z. and H.W. analysed the genomic data; M.Y.,
C.T., Z.W., F.D., J.C., Y.L., Shutang Z., Tianbao L., Shougong Z., Jian W., Junyi W., H.Y.,
G.Y. and Jun W. made the characteristic analyses of the Morus genome; N.H. and
Shancen Z. wrote the paper; N.H., A.P. and G.Y. revised the manuscript.

Additional information
Accession codes: The Morus genome data has been deposited in the Genbank short-read
archive (Bioproject: PRJNA202089; short reads: SRA075563). The version described in
this paper is ATGF01000000. The miRNA data has been deposited in the Gene
Expression Omnibus (GEO) under the accession code GSE48168.

Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: He, N. et al. Draft genome sequence of the mulberry tree Morus
notabilis. Nat. Commun. 4:2445 doi: 10.1038/ncomms3445 (2013).

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms3445 ARTICLE

NATURE COMMUNICATIONS | 4:2445 | DOI: 10.1038/ncomms3445 | www.nature.com/naturecommunications 9

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Genome sequencing and assembly
	Repetitive sequences
	Gene prediction and functional annotation

	Figure™1Cytological analysis of M. notabilis chromosomes.(a) Cytological detection of M. notabilis chromosomes. (b) Chromosome karyotyping of M. notabilis. Scale bar, 10thinspmgrm
	Genome evolution

	Figure™2Phylogenetic relationships of 13 plant species.The species are: M. notabilis, T. cacao, A. thaliana, P. trichocarpa, S. lycopersicum, V. vinifera, P. bretschneideri, M. domestica, P. persica, F. vesca, C. sativa, M. truncatula and O. sativa. The s
	Table 1 
	Diversifying selection
	Resistance genes
	Protease inhibitor genes

	Figure™3Ks distribution plot.The red, magenta, green and yellow lines represent Ks distribution of orthologous gene pairs in M. notabilis-C. sativa, M. notabilis-F. vesca, M. notabilis-M. domestica and M. notabilis-M. truncatula, respectively
	Figure™4Phylogenetic trees of M. notabilis and other plants.Different data set were used to construct a phylogeny of the considered species. (a) A tree constructed using 136 single genes in the predicted M. notabilis gene data sets and their best-matched 
	Figure™5In-silico staining of M. notabilis gene models against F. vesca.Using a sliding window approach (500thinspkb), the total gene density (upper track) and the relative distribution of orthologous genes (lower track) were calculated for M. notabilis
	Figure™6Dotplots of species and Ks distributions.M. notabilis-V. vinifera (a), F. vesca-V. vinifera (b), C. sativa-V. vinifera (c) and Ks distribution of within-each-plant homologues (d) and between-different-plant homologues (e) in collinearity. For M. n
	Mulberry miRNAs identified in silkworm tissues

	Discussion
	Methods
	Karyotype analysis of M. notabilis C.K. Schn
	DNA and RNA preparation
	Genome sequencing
	Genome assembly
	TEs and repetitive DNA
	Gene prediction and annotation
	RNA-seq and EST sequencing
	Non-coding RNA genes
	In-silico gene staining
	Identification of mulberry miRNAs in silkworm tissues
	Phylogenetic tree and determine the speciation time
	Inference of gene collinearity
	Dating evolutionary event
	Homologous dotplotting
	Data used in this study

	BarberE. J. W.Prehistoric Textiles: The Development Of Cloth In The Neolithic And Bronze Ages With Special Reference To The AegeanPrinceton University Press1991ClementW. L.WeiblenG. D.Morphological evolution in the mulberry family (Moraceae)Syst. Bot.3453
	This project was funded by research grants from the National Hi-Tech Research and Development Program of China (No. 2013AA100605-3), the ’111CloseCurlyQuote Project(B12006), the Science Fund for Distinguished Young Scholars of Chongqing (Grant No. cstc201
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




