236 research outputs found

    A Characterization of Subpluriharmonicity for a Function of Several Complex Variables

    Get PDF
    We give a characterization of a subpluriharmonic function of several complex variables in the sense of Fujita (J. Math. Kyoto Univ., 30:637–649, 1990) by using polynomial functions of degree at most two.The first author is partially supported by JSPS KAKENHI Grant Number JP17K05301

    Characterization of Genetic Signal Sequences with Batch-Learning SOM

    Get PDF
    An unsupervised clustering algorithm Kohonen's SOM is an effective tool for clustering and visualizing high-dimensional complex data on a single map. We previously modified the conventional SOM for genome informatics, making the learning process and resulting map independent of the order of data input on the basis of Batch Learning SOM (BL-SOM). We generated BL-SOMs for tetra- and pentanucleotide frequencies in 300,000 10-kb sequences from 13 eukaryotes for which almost complete genomic sequences are available. BL-SOM recognized species-specific characteristics of oligonucleotide frequencies in most 10-kb sequences, permitting species-specific classification of sequences without any information regarding the species. We next constructed BL-SOMs with tetra- and pentanucleotide frequencies in 37,086 full-length mouse cDNA sequences. With BL-SOM we also analyzed occurrence patterns of the oligonucleotides that are thought to be involved in transcriptional regulation on the human genome

    Spatiotemporal variability of surface mass balance along the JARE traverse route for 1992-2018

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc

    Intermediate pseudoconvexity for unramified Riemann domains over ℂⁿ

    Get PDF
    We characterize the q-pseudoconvexity for unramified Riemann domains over ℂⁿ, where 1≤q≤n, by the continuity property which holds for a class of maps whose projections to ℂⁿ are families of unidirectionally parameterized q-dimensional analytic balls written by polynomials of degree at most two

    ISMIP6 future projections for Greenland and Antarctica with the ice sheet model SICOPOLIS

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions: [OM] Polar Meteorology and Glaciology, Wed. 4 Dec. / 2F Auditorium, National Institute of Polar Researc

    Formation of meso, N-diphenylprotoporphyrin IX by an aerobic reaction of phenylhydrazine with oxyhemoglobins.

    Get PDF
    Administration of phenylhydrazine to rabbits resulted in the denaturation of hemoglobins in erythrocytes, causing the formation of intracellular precipitates known as Heinz bodies, severe hemolytic anemia, and reticulocytosis. To elucidate the molecular mechanism of the destabilization, we allowed human oxyhemoglobins to react aerobically with phenylhydrazine. After treatment with acetic acid/HCl and H2SO4/methanol, the chloroform extract contained blue-green pigments of major products accompanied by different minor products. Each product was isolated by column chromatography. By fast-atom-bombardment mass spectrometry (FAB-MS) and proton nuclear magnetic resonance (1H-NMR) spectrometry, dimethyl esters of N-phenylprotoporphyrin IX and meso, N-diphenylprotoporphyrin IX were determined. Other major products also were determined to be dimethyl esters of triphenyl-and tetraphenyl-substituted protoporphyrins by FAB-MS. The formation of meso, N-diphenylprotoporphyrin indicated that the addition of a phenyl radical to the meso-carbon atom of the protoporphyrin ring occurred. Triphenyl and tetraphenyl adducts also indicated the formation of phenyl radicals in the aerobic reaction of phenylhydrazine with oxyhemoglobins. From these results, we suggest that the formation of phenyl radicals and the replacement of heme with phenyl-substituted protoporphyrins cause the destabilization of hemoglobins to induce Heinz bodies and hemolytic anemia with phenylhydrazine.</p

    Skeletal FGFR1 signaling is necessary for regulation of serum phosphate level by FGF23 and normal life span

    Get PDF
    Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span

    Characterization of Genetic Signal Sequences with Batch-Learning SOM

    Get PDF
    An unsupervised clustering algorithm Kohonen's SOM is an effective tool for clustering and visualizing high-dimensional complex data on a single map. We previously modified the conventional SOM for genome informatics, making the learning process and resulting map independent of the order of data input on the basis of Batch Learning SOM (BL-SOM). We generated BL-SOMs for tetra- and pentanucleotide frequencies in 300,000 10-kb sequences from 13 eukaryotes for which almost complete genomic sequences are available. BL-SOM recognized species-specific characteristics of oligonucleotide frequencies in most 10-kb sequences, permitting species-specific classification of sequences without any information regarding the species. We next constructed BL-SOMs with tetra- and pentanucleotide frequencies in 37,086 full-length mouse cDNA sequences. With BL-SOM we also analyzed occurrence patterns of the oligonucleotides that are thought to be involved in transcriptional regulation on the human genome
    corecore