1,402 research outputs found

    Biexciton recombination rates in self-assembled quantum dots

    Get PDF
    The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombination rate in single self-assembled quantum dots have found values spanning from two times the single exciton recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formulation is developed to calculate recombination rates including thermal and many-body effects. Using real-space Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size, radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results compare favorably to recent experiments and calculations on related dot systems. Configuration interaction calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.Comment: 11 pages, 4 figure

    TB47: The Relationship of Fibril Angle to Certain Factors in Plantation-grown Red Pine

    Get PDF
    The purpose of this study was to make an estimate of the average ring fibril angle within the stem of 48-year old plantation-grown red pine (Pinus resinosa, Ait.). It was also conducted to determine the degreed relationship between this estimated average ring fibril angle and various factors such as position in the tree, latewood percent, specific gravity, and growth rate.https://digitalcommons.library.umaine.edu/aes_techbulletin/1142/thumbnail.jp

    Kalman-filter control schemes for fringe tracking. Development and application to VLTI/GRAVITY

    Full text link
    The implementation of fringe tracking for optical interferometers is inevitable when optimal exploitation of the instrumental capacities is desired. Fringe tracking allows continuous fringe observation, considerably increasing the sensitivity of the interferometric system. In addition to the correction of atmospheric path-length differences, a decent control algorithm should correct for disturbances introduced by instrumental vibrations, and deal with other errors propagating in the optical trains. We attempt to construct control schemes based on Kalman filters. Kalman filtering is an optimal data processing algorithm for tracking and correcting a system on which observations are performed. As a direct application, control schemes are designed for GRAVITY, a future four-telescope near-infrared beam combiner for the Very Large Telescope Interferometer (VLTI). We base our study on recent work in adaptive-optics control. The technique is to describe perturbations of fringe phases in terms of an a priori model. The model allows us to optimize the tracking of fringes, in that it is adapted to the prevailing perturbations. Since the model is of a parametric nature, a parameter identification needs to be included. Different possibilities exist to generalize to the four-telescope fringe tracking that is useful for GRAVITY. On the basis of a two-telescope Kalman-filtering control algorithm, a set of two properly working control algorithms for four-telescope fringe tracking is constructed. The control schemes are designed to take into account flux problems and low-signal baselines. First simulations of the fringe-tracking process indicate that the defined schemes meet the requirements for GRAVITY and allow us to distinguish in performance. In a future paper, we will compare the performances of classical fringe tracking to our Kalman-filter control.Comment: 17 pages, 8 figures, accepted for publication in A&

    Feeding responses of the bivalves Crassostrea gigas and Mytilus trossulus to chemical composition of fresh and aged kelp detritus

    Get PDF
    Abstract The chemical composition of kelps (e.g. polyphenolics) deters grazing by herbivores, but kelp detritus is potentially a source of nutrition for suspension feeders. The effects of kelp detritus derived from two species [Agarum fimbriatum Harvey and Costaria costata (Turner) Saunders] on feeding of oysters, Crassostrea gigas Thunberg, and mussels, Mytilus trossulus Gould, were examined in feeding experiments. Fresh and aged kelp particles were sequentially presented in combination with the microalga Rhodomonas lens at an initial total concentration of 5·10 -4 ml -1 . Aging of kelp particles for 4 days in seawater significantly reduced the concentration of polyphenolics without changing the total carbon or nitrogen content. Clearance rates of both mussels and oysters were significantly lower in the presence of fresh versus aged kelp particles, and clearance rates declined overall with declining polyphenolic concentrations. Video endoscopy was used to examine feeding selectivity at the level of the gill in oysters in the same food treatments used in the clearance rate experiments. Comparison of particle composition in the water versus the pseudofeces in both oysters and mussels was also used as a measure of feeding selectivity. When presented with R. lens in combination with fresh and aged kelp particles selectivity for R. lens tended to be greater against fresh than aged particles, and there was some indication that this was stronger for A. fimbriatum than for C. costata particles. The ability to select was lower at very high polyphenolic concentrations, which may reflect poisoning of sensory binding sites. These data suggest that bivalves distinguish among particles of varying chemical composition and respond by changing their clearance rates and their selectivity

    Predictors of Achievement When Virtual Manipulatives are Used for Mathematics Instruction

    Get PDF
    The purpose of this study was to determine variables that predict performance when virtual manipulatives are used for mathematics instruction. This study included the following quasi-experimental design features: 1) a large number of students (N=350); 2) within-class random-assignment to treatment groups; 3) retention effects measured by post-test and delayed post-test; 4) fidelity of instructional treatments documented through observations; and, 5) instrument development for the unit of study. This design was used to determine variables that predict student performance on tests of fraction knowledge for third- and fourth-grade students in two treatment groups: classroom instruction using texts and physical manipulatives (CI), and computer lab instruction using virtual fraction applets (VM). The Pre-test, Post-test 1, and Post-test 2 measured learning and retention of fraction concepts. Observation ethograms documented representation use. The results revealed that fewer demographic predictors of student performance (e.g., socio-economic status, English language learner status, and gender) exist during fraction instruction when virtual manipulatives were used. When instructors used virtual manipulatives, there was an equalizing effect on achievement in third and fourth grade classrooms, in that fewer demographic factors were influential for VM groups compared to CI groups

    Characterization of Pfiesteria Ichthyocidal Activity

    Get PDF
    Letter to the Editor regarding article: Drgon, T., et al. 2005. Characterization of ichthyocidal activity of Pfiesteria piscicida: Dependence on the dinospore cell density. Appl. Environ. Microbiol. 71:519–52

    Path integral Monte Carlo simulation of charged particles in traps

    Full text link
    This chapter is devoted to the computation of equilibrium (thermodynamic) properties of quantum systems. In particular, we will be interested in the situation where the interaction between particles is so strong that it cannot be treated as a small perturbation. For weakly coupled systems many efficient theoretical and computational techniques do exist. However, for strongly interacting systems such as nonideal gases or plasmas, strongly correlated electrons and so on, perturbation methods fail and alternative approaches are needed. Among them, an extremely successful one is the Monte Carlo (MC) method which we are going to consider in this chapter.Comment: 18 pages, based on talks on Hareaus school on computational methods, Greifswald, September 200

    OXYGEN UPTAKE, THE CIRCULATORY SYSTEM, AND HAEMOGLOBIN FUNCTION IN THE INTERTIDAL POLYCHAETE TEREBELLA HAPLOCHAETA (Ehlers)

    Get PDF
    Abstract: The intertidal polychaete Terebelh: haphJchaeta (Ehlers) shows a high degree of oxyregulation in declining pO., when confined to its burrow at low tide. This response is achieved by a number of adaptations to the respiratory system. The worm ventilates its burrow in a headward direction by rhythmical contractions of the body. The rate of these pulsatior~ increases at low pO., and assists the circulation of the coelomic and vascular fluids. Haemoglobin in the vessels has a high affinity for oxygen and a sigmoidal equilibrium curve. Both the shape and position of the oxygen-binding curve are sensitive to changes in pH, pCO2, and temperature in a way that suggests augmentation of oxygen delivery tit low tide. The concentration of haemoglobin in the vessels is high and is further raised following warm acclimation, presumably to meet an increase in oxygen demand. The ultrastructure of the gills and blood vessels indicates a design for function at low oxygen tensions where diffusion distances must be short and surface areas large in order to enhance the rate of diffusion of oxygen from the near environment

    Population epigenetic divergence exceeds genetic divergence in the Eastern oyster Crassostrea virginica in the Northern Gulf of Mexico

    Get PDF
    © 2019 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd Populations may respond to environmental heterogeneity via evolutionary divergence or phenotypic plasticity. While evolutionary divergence occurs through DNA sequence differences among populations, plastic divergence among populations may be generated by changes in the epigenome. Here, we present the results of a genome-wide comparison of DNA methylation patterns and genetic structure among four populations of Eastern oyster (Crassostrea virginica) in the northern Gulf of Mexico. We used a combination of restriction site-associated DNA sequencing (RADseq) and reduced representation bisulfite sequencing (RRBS) to explore population structure, gene-wide averages of FST, and DNA methylation differences between oysters inhabiting four estuaries with unique salinity profiles. This approach identified significant population structure despite a moderately low FST (0.02) across the freshwater boundary of the Mississippi river, a finding that may reflect recent efforts to restore oyster stock populations. Divergence between populations in CpG methylation was greater than for divergence in FST, likely reflecting environmental effects on DNA methylation patterns. Assessment of CpG methylation patterns across all populations identified that only 26% of methylated DNA was intergenic; and, only 17% of all differentially methylated regions (DMRs) were within these same regions. DMRs within gene bodies between sites were associated with genes known to be involved in DNA damage repair, ion transport, and reproductive timing. Finally, when assessing the correlation between genomic variation and DNA methylation between these populations, we observed population-specific DNA methylation profiles that were not directly associated with single nucleotide polymorphisms or broader gene-body mean FST trends. Our results suggest that C. virginica may use DNA methylation to generate environmentally responsive plastic phenotypes and that there is more divergence in methylation than divergence in allele frequencies
    corecore