179 research outputs found

    Investigation to the deep center related properties of low temperature grown InPBi with Hall and photoluminescence

    Get PDF
    InP1-xBix epilayers with bismuth (Bi) concentration x= 1.0% were grown on InP by gas source molecular beam epitaxy (GS-MBE) at low temperature (LT). Bi incorporation decreased the intrinsic free electron concentration of low temperature grown InP indicated by hall analysis. It is concluded that deep level center was introduced by Bi. Influence of Si doping on the InP1-xBix films Photoluminescence (PL) was investigated. N-type doping in the InP1-xBix epilayers was found to be effective at PL enhancement. Blue shift of InPBi PL emission wavelength was observed as the Si doping concentration increasing. Two independent peaks were fitted and their temperature dependence behavior was observed to be distinct obviously. Two individual radiative recombination processes were expected to be involved

    Tunable magnetic response of metamaterials

    Get PDF
    We demonstrate a thermally tunable optical metamaterial with negative permeability working in the visible range. By covering coupled metallic nanostrips with aligned nematic liquid crystals (NLCs), the magnetic response wavelength of the metamaterial is effectively tuned through control of the ambient temperature, changing the refractive index of LC via phase transitions. By increasing the ambient temperature from 20 degree to 50 degree, the magnetic response wavelength shifts from 650nm to 632nm. Numerical simulations confirm our tests and match the experimental observations well

    Dual-Band Negative Index Metamaterial: Double-Negative at 813 nm and Single-Negative at 772 nm

    Get PDF
    This work is concerned with the experimental demonstration of a dual-band negative index metamaterial. The sample is double-negative (showing both a negative effective permeability and a negative effective permittivity) for wavelengths between 799 and 818 nm of linearly polarized light with a real part of refractive index of about -1.0 at 813 nm; the ratio -Re(n)/Im(n) is close to 1.3 at that wavelength. For an orthogonal polarization, the same sample also exhibits a negative refractive index in the visible (at 772 nm). The spectroscopic measurements of the material are in good agreement with the results obtained from a finite element electromagnetic solver for the actual geometry of the fabricated sample at both polarizations.Comment: 3 pages, 4 figure

    Contactless electroreflectance and theoretical studies of band gap and spin-orbit splitting in InP1-xBix dilute bismide with x <= 0.034

    Get PDF
    Contactless electroreflectance is applied to study the band gap (E-0) and spin-orbit splitting (Delta(SO)) in InP1-xBix alloys with 0 < x <= 0.034. The E-0 transition shifts to longer wavelengths very significantly (-83 meV/% Bi), while the E0 + Delta(SO) transition shifts very weakly (-13 meV/% Bi) with the rise of Bi concentration. These changes in energies of optical transitions are discussed in the context of the valence band anticrossing model and ab initio calculations. Shifts of E-0 and E-0 + Delta(SO) transitions, obtained within ab-initio calculations, are -106 and -20 meV per % Bi, respectively, which is in a good agreement with experimental results

    Fibroblasts derived from human embryonic stem cells direct development and repair of 3D human skin equivalents

    Get PDF
    INTRODUCTION: Pluripotent, human stem cells hold tremendous promise as a source of progenitor and terminally differentiated cells for application in future regenerative therapies. However, such therapies will be dependent upon the development of novel approaches that can best assess tissue outcomes of pluripotent stem cell-derived cells and will be essential to better predict their safety and stability following in vivo transplantation. METHODS: In this study we used engineered, human skin equivalents (HSEs) as a platform to characterize fibroblasts that have been derived from human embryonic stem (hES) cell. We characterized the phenotype and the secretion profile of two distinct hES-derived cell lines with properties of mesenchymal cells (EDK and H9-MSC) and compared their biological potential upon induction of differentiation to bone and fat and following their incorporation into the stromal compartment of engineered, HSEs. RESULTS: While both EDK and H9-MSC cell lines exhibited similar morphology and mesenchymal cell marker expression, they demonstrated distinct functional properties when incorporated into the stromal compartment of HSEs. EDK cells displayed characteristics of dermal fibroblasts that could support epithelial tissue development and enable re-epithelialization of wounds generated using a 3D tissue model of cutaneous wound healing, which was linked to elevated production of hepatocyte growth factor (HGF). Lentiviral shRNA-mediated knockdown of HGF resulted in a dramatic decrease of HGF secretion from EDK cells that led to a marked reduction in their ability to promote keratinocyte proliferation and re-epithelialization of cutaneous wounds. In contrast, H9-MSCs demonstrated features of mesenchymal stem cells (MSC) but not those of dermal fibroblasts, as they underwent multilineage differentiation in monolayer culture, but were unable to support epithelial tissue development and repair and produced significantly lower levels of HGF. CONCLUSIONS: Our findings demonstrate that hES-derived cells could be directed to specified and alternative mesenchymal cell fates whose function could be distinguished in engineered HSEs. Characterization of hES-derived mesenchymal cells in 3D, engineered HSEs demonstrates the utility of this tissue platform to predict the functional properties of hES-derived fibroblasts before their therapeutic transplantation

    PDGF Upregulates Mcl-1 Through Activation of Ξ²-Catenin and HIF-1Ξ±-Dependent Signaling in Human Prostate Cancer Cells

    Get PDF
    BACKGROUND: Aberrant platelet derived growth factor (PDGF) signaling has been associated with prostate cancer (PCa) progression. However, its role in the regulation of PCa cell growth and survival has not been well characterized. METHODOLOGY/PRINCIPAL FINDINGS: Using experimental models that closely mimic clinical pathophysiology of PCa progression, we demonstrated that PDGF is a survival factor in PCa cells through upregulation of myeloid cell leukemia-1 (Mcl-1). PDGF treatment induced rapid nuclear translocation of Ξ²-catenin, presumably mediated by c-Abl and p68 signaling. Intriguingly, PDGF promoted formation of a nuclear transcriptional complex consisting of Ξ²-catenin and hypoxia-inducible factor (HIF)-1Ξ±, and its binding to Mcl-1 promoter. Deletion of a putative hypoxia response element (HRE) within the Mcl-1 promoter attenuated PDGF effects on Mcl-1 expression. Blockade of PDGF receptor (PDGFR) signaling with a pharmacological inhibitor AG-17 abrogated PDGF induction of Mcl-1, and induced apoptosis in metastatic PCa cells. CONCLUSIONS/SIGNIFICANCE: Our study elucidated a crucial survival mechanism in PCa cells, indicating that interruption of the PDGF-Mcl-1 survival signal may provide a novel strategy for treating PCa metastasis

    Strain and localization effects in InGaAs(N) quantum wells: Tuning the magnetic response

    Get PDF
    We investigated effects of localization and strain on the optical and magneto-optical properties of diluted nitrogen III-V quantum wells theoretically and experimentally. High-resolution x-ray diffraction, photoluminescence (PL), and magneto-PL measurements under high magnetic fields up to 15 T were performed at low temperatures. Bir-Pikus Hamiltonian formalism was used to study the influence of strain, confinement, and localization effects. The circularly polarized magneto-PL was interpreted considering localization aspects in the valence band ground state. An anomalous behavior of the electron-hole pair magnetic shift was observed at low magnetic fields, ascribed to the increase in the exciton reduced mass due to the negative effective mass of the valence band ground state

    CCR5 is a suppressor for cortical plasticity and hippocampal learning and memory

    Get PDF
    Although the role of CCR5 in immunity and in HIV infection has been studied widely, its role in neuronal plasticity, learning and memory is not understood. Here, we report that decreasing the function of CCR5 increases MAPK/CREB signaling, long-term potentiation (LTP), and hippocampus-dependent memory in mice, while neuronal CCR5 overexpression caused memory deficits. Decreasing CCR5 function in mouse barrel cortex also resulted in enhanced spike timing dependent plasticity and consequently, dramatically accelerated experience-dependent plasticity. These results suggest that CCR5 is a powerful suppressor for plasticity and memory, and CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits. Consistent with this hypothesis, the HIV V3 peptide caused LTP, signaling and memory deficits that were prevented by Ccr5 knockout or knockdown. Overall, our results demonstrate that CCR5 plays an important role in neuroplasticity, learning and memory, and indicate that CCR5 has a role in the cognitive deficits caused by HIV
    • …
    corecore