9 research outputs found

    Cardiovascular and Stride Frequency Differences During Land and Aquatic Treadmill Walking

    Get PDF
    This study examined heart rate (HR) and stride frequency (SF) values of 30 college-aged males and females during dry-land (DL) and aquatic walking (AW). Aquatic walking trials were completed in an underwater treadmill with the water depth at waist level; the water temperature (31℃ ± 0.1℃) and room temperature (26.6℃ ± 0.1℃) were maintained at thermoneutral levels throughout the study. During each walking condition, HR and SF were recorded at treadmill speeds of 1 mph, 2 mph, and 3 mph. Participants were instructed to walk with their hands at their sides swinging as they would when walking on dry-land unless they felt the need to use the handrails to steady themselves. Heart rate monitors were used to record cardiovascular changes, and strides were measured from consecutive left and right toe strikes. Results of the study indicated HR was significantly higher during DL than AW at 1 mph (p \u3c .001) and 3 mph (p \u3c .001) but was not significantly different (p = .64) at 2 mph. The SF of the participants was significantly lower (p \u3c .001) during AW than DL at all speeds. When comparing sex, females had significantly higher HR at 1 mph (p = .012), 2 mph (p = .007), and 3 mph (p \u3c .001) than males for DL conditions. No differences in HR were found during the AW conditions (F = 0.66, p = 0.44, ηp2 = 0.02). No differences in SF were observed between males and females in both DL (F = 2.96, p = 0.06, ηp2 = 0.09) and AW (F = 1.03, p = 0.32, ηp2 = 0.036) conditions. As a result, AW increased HR values similar to those of DL, but without the added stress to the lower extremities due to the buoyancy of the water. Thus, AW provided an exercise medium capable of meeting the ACSM intensity guidelines for PA and allowed adults to be physically active presumably with less stress on the lower body

    Epigenetic patterns in a complete human genome

    No full text
    The completion of a telomere-to-telomere human reference genome, T2T-CHM13, has resolved complex regions of the genome, including repetitive and homologous regions. Here, we present a high-resolution epigenetic study of previously unresolved sequences, representing entire acrocentric chromosome short arms, gene family expansions, and a diverse collection of repeat classes. This resource precisely maps CpG methylation (32.28 million CpGs), DNA accessibility, and short-read datasets (166,058 previously unresolved chromatin immunoprecipitation sequencing peaks) to provide evidence of activity across previously unidentified or corrected genes and reveals clinically relevant paralog-specific regulation. Probing CpG methylation across human centromeres from six diverse individuals generated an estimate of variability in kinetochore localization. This analysis provides a framework with which to investigate the most elusive regions of the human genome, granting insights into epigenetic regulation

    The complete sequence of a human Y chromosome.

    No full text
    The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes

    The complete sequence of a human Y chromosome

    No full text
    The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes

    The complete sequence of a human genome.

    No full text
    Since its initial release in 2000, the human reference genome has covered only the euchromatic fraction of the genome, leaving important heterochromatic regions unfinished. Addressing the remaining 8% of the genome, the Telomere-to-Telomere (T2T) Consortium presents a complete 3.055 billion-base pair sequence of a human genome, T2T-CHM13, that includes gapless assemblies for all chromosomes except Y, corrects errors in the prior references, and introduces nearly 200 million base pairs of sequence containing 1956 gene predictions, 99 of which are predicted to be protein coding. The completed regions include all centromeric satellite arrays, recent segmental duplications, and the short arms of all five acrocentric chromosomes, unlocking these complex regions of the genome to variational and functional studies
    corecore