11 research outputs found

    Understanding the Elements of Executable Architectures Through a Multi-Dimensional Analysis Framework

    Get PDF
    The objective of this dissertation study is to conduct a holistic investigation into the elements of executable architectures. Current research in the field of Executable Architectures has provided valuable solution-specific demonstrations and has also shown the value derived from such an endeavor. However, a common theory underlying their applications has been missing. This dissertation develops and explores a method for holistically developing an Executable Architecture Specification (EAS), i.e., a meta-model containing both semantic and syntactic information, using a conceptual framework for guiding data coding, analysis, and validation. Utilization of this method resulted in the description of the elements of executable architecture in terms of a set of nine information interrogatives: an executable architecture information ontology. Once the detail-rich EAS was constructed with this ontology, it became possible to define the potential elements of executable architecture through an intermediate level meta-model. The intermediate level meta-model was further refined into an interrogative level meta-model using only the nine information interrogatives, at a very high level of abstraction

    Executable Architecture Research at Old Dominion University

    Get PDF
    Executable Architectures allow the evaluation of system architectures not only regarding their static, but also their dynamic behavior. However, the systems engineering community do not agree on a common formal specification of executable architectures. To close this gap and identify necessary elements of an executable architecture, a modeling language, and a modeling formalism is topic of ongoing PhD research. In addition, systems are generally defined and applied in an operational context to provide capabilities and enable missions. To maximize the benefits of executable architectures, a second PhD effort introduces the idea of creating an executable context in addition to the executable architecture. The results move the validation of architectures from the current information domain into the knowledge domain and improve the reliability of such validation efforts. The paper presents research and results of both doctoral research efforts and puts them into a common context of state-of-the-art of systems engineering methods supporting more agility

    Researching House and Senate Rules and Procedures

    No full text

    Balanced Budgets and the Withering of U.S. Fiscal Policy: The Outlines of a Postwar American Fiscal Constitution

    No full text

    5th International Symposium on Focused Ultrasound

    No full text
    corecore