325 research outputs found

    Regulation of adipose tissue inflammation by interleukin 6

    Get PDF
    Obesity is associated with a chronic state of low-grade inflammation and progressive tissue infiltration by immune cells and increased expression of inflammatory cytokines. It is established that interleukin 6 (IL6) regulates multiple aspects of metabolism, including glucose disposal, lipolysis, oxidative metabolism, and energy expenditure. IL6 is secreted by many tissues, but the role of individual cell types is unclear. We tested the role of specific cells using a mouse model with conditional expression of the Il6 gene. We found that IL6 derived from adipocytes increased, while IL6 derived from myeloid cells and muscle suppressed, macrophage infiltration of adipose tissue. These opposite actions were associated with a switch of IL6 signaling from a canonical mode (myeloid cells) to a noncanonical trans-signaling mode (adipocytes and muscle) with increased expression of the ADAM10/17 metalloprotease that promotes trans-signaling by the soluble IL6 receptor alpha. Collectively, these data demonstrate that the source of IL6 production plays a major role in the physiological regulation of metabolism

    A feed-forward regulatory loop in adipose tissue promotes signaling by the hepatokine FGF21

    Get PDF
    The cJun NH2-terminal kinase (JNK) signaling pathway is activated by metabolic stress and promotes the development of metabolic syndrome, including hyperglycemia, hyperlipidemia, and insulin resistance. This integrated physiological response involves cross-talk between different organs. Here we demonstrate that JNK signaling in adipocytes causes an increased circulating concentration of the hepatokine fibroblast growth factor 21 (FGF21) that regulates systemic metabolism. The mechanism of organ crosstalk is mediated by a feed-forward regulatory loop caused by JNK-regulated FGF21 autocrine signaling in adipocytes that promotes increased expression of the adipokine adiponectin and subsequent hepatic expression of the hormone FGF21. The mechanism of organ cross-talk places circulating adiponectin downstream of autocrine FGF21 expressed by adipocytes and upstream of endocrine FGF21 expressed by hepatocytes. This regulatory loop represents a novel signaling paradigm that connects autocrine and endocrine signaling modes of the same hormone in different tissues

    Alterations in Postprandial Hepatic Glycogen Metabolism in Type 2 Diabetes

    Get PDF
    Decreased skeletal muscle glucose disposal and increased endogenous glucose production (EGP) contribute to postprandial hyperglycemia in type 2 diabetes, but the contribution of hepatic glycogen metabolism remains uncertain. Hepatic glycogen metabolism and EGP were monitored in type 2 diabetic patients and nondiabetic volunteer control subjects (CON) after mixed meal ingestion and during hyperglycemic-hyperinsulinemic-somatostatin clamps applying 13C nuclear magnetic resonance spectroscopy (NMRS) and variable infusion dual-tracer technique. Hepatocellular lipid (HCL) content was quantified by 1H NMRS. Before dinner, hepatic glycogen was lower in type 2 diabetic patients (227 ± 6 vs. CON: 275 ± 10 mmol/l liver, P < 0.001). After meal ingestion, net synthetic rates were 0.76 ± 0.16 (type 2 diabetic patients) and 1.36 ± 0.15 mg · kg−1 · min−1 (CON, P < 0.02), resulting in peak concentrations of 283 ± 15 and 360 ± 11 mmol/l liver. Postprandial rates of EGP were ∼0.3 mg · kg−1 · min−1 (30–170 min; P < 0.05 vs. CON) higher in type 2 diabetic patients. Under clamp conditions, type 2 diabetic patients featured ∼54% lower (P < 0.03) net hepatic glycogen synthesis and ∼0.5 mg · kg−1 · min−1 higher (P < 0.02) EGP. Hepatic glucose storage negatively correlated with HCL content (R = −0.602, P < 0.05). Type 2 diabetic patients exhibit 1) reduction of postprandial hepatic glycogen synthesis, 2) temporarily impaired suppression of EGP, and 3) no normalization of these defects by controlled hyperglycemic hyperinsulinemia. Thus, impaired insulin sensitivity and/or chronic glucolipotoxicity in addition to the effects of an altered insulin-to-glucagon ratio or increased free fatty acids accounts for defective hepatic glycogen metabolism in type 2 diabetic patients

    Resistance to High-Fat Diet–Induced Obesity but Exacerbated Insulin Resistance in Mice Overexpressing Preadipocyte Factor-1 (Pref-1): A New Model of Partial Lipodystrophy

    Get PDF
    OBJECTIVE—White adipose tissue is a critical regulator of whole-body glucose metabolism. Preadipocyte factor-1 (Pref-1) is a secreted protein that inhibits adipocyte differentiation, both in vitro and in vivo. In this study, we have investigated the effects of Pref-1 overexpression on whole-body glucose homeostasis and its contribution to the development of insulin resistance

    Regulation of Exogenous and Endogenous Glucose Metabolism by Insulin and Acetoacetate in the Isolated Working Rat Heart A Three Tracer Study of Glycolysis, Glycogen Metabolism, and Glucose Oxidation

    Get PDF
    Abstract Myocardial glucose use is regulated by competing substrates and hormonal influences. However, the interactions of these effectors on the metabolism of exogenous glucose and glucose derived from endogenous glycogen are not completely understood. In order to determine changes in exogenous glucose uptake, glucose oxidation, and glycogen enrichment, hearts were perfused with glucose (5 mM) either alone, or glucose plus insulin (40 U/ml), glucose plus acetoacetate (5 mM), or glucose plus insulin and acetoacetate, using a three tracer ( 3 H, 14 C, and 13 C) technique. Insulinstimulated glucose uptake and lactate production in the absence of acetoacetate, while acetoacetate inhibited the uptake of glucose and the oxidation of both exogenous glucose and endogenous carbohydrate. Depending on the metabolic conditions, the contribution of glycogen to carbohydrate metabolism varied from 20-60%. The addition of acetoacetate or insulin increased the incorporation of exogenous glucose into glycogen twofold, and the combination of the two had additive effects on the incorporation of glucose into glycogen. In contrast, the glycogen content was similar for the three groups. The increased incorporation of glucose in glycogen without a significant change in the glycogen content in hearts perfused with glucose, acetoacetate, and insulin suggests increased glycogen turnover. We conclude that insulin and acetoacetate regulate the incorporation of glucose into glycogen as well as the relative contributions of exogenous glucose and endogenous carbohydrate to myocardial energy metabolism by different mechanisms. ( J. Clin. Invest. 1997. 100:2892-2899.) Key words: citric acid cycle • NMR • isotopomer analysi
    corecore