120 research outputs found

    Strength distribution of cemented waste rock backfill: a similarity simulation experiment

    Get PDF
    Backfill of cemented waste rock into underground mined-out areas is an effective way to eliminate solid wastes and potential hazards in mines. To understand the backfill strength distribution law throughout the stope, similarity simulation experiments were conducted for direct-irrigating cemented waste rock backfill, and OpenCV and neural network were employed to analyze particle segregation and the spatial distribution of backfill strength. Results show that distinct gravitational segregation leads to an uneven and heterogeneous distribution of natural graded waste rocks in a similar model. Backfill strength near sidewalls and bottom of the model surpasses that of other areas. In the vertical direction, the average backfill strength increases with depth, ranging from 1.15 MPa at the topmost layer to 1.91 MPa at the bottommost layer. Horizontally, the average backfill strength near model boundaries is consistently higher than that at the model center, irrespective of the layer depth and orientation. Neural network prediction on spatial backfill strength proves reliable, exhibiting an average relative error of 4.12%, compared to the traditional surface fitting with a 10.20% error. Verification tests affirm the capability of the neural network model to accurately predict the anisotropic and nonlinear distribution of backfill strength in a large stope

    The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae

    Get PDF
    Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene

    Idiopathic Ventricular Arrhythmias Originating From the Pulmonary Sinus Cusp Prevalence, Electrocardiographic/Electrophysiological Characteristics, and Catheter Ablation

    Get PDF
    AbstractBackgroundIdiopathic ventricular arrhythmias (VAs) originating from the pulmonary sinus cusp (PSC) have not been sufficiently clarified.ObjectivesThe goal of this study was to investigate the prevalence, electrocardiographic characteristics, mapping, and ablation of idiopathic VAs arising from the PSC.MethodsData were analyzed from 218 patients undergoing successful endocardial ablation of idiopathic VAs with a left bundle branch block morphology and inferior axis deviation.ResultsTwenty-four patients had VAs originating from the PSC. In the first 7 patients, initial ablation performed in the right ventricular outflow tract failed to abolish the clinical VAs but produced a small change in the QRS morphology in 3 patients. In all 24 patients, the earliest activation was eventually identified in the PSC, at which a sharp potential was observed preceding the QRS complex onset by 28.2 ± 2.9 ms. The successful ablation site was in the right cusp (RC) in 10 patients (42%), the left cusp (LC) in 8 (33%), and the anterior cusp (AC) in 6 (25%). Electrocardiographic analysis showed that RC-VAs had significantly larger R-wave amplitude in lead I and a smaller aVL/aVR ratio of Q-wave amplitude compared with AC-VAs and LC-VAs, respectively. The R-wave amplitude in inferior leads was smaller in VAs localized in the RC than in the LC but did not differ between VAs from the AC and LC.ConclusionsVAs arising from the PSC are not uncommon, and RC-VAs have unique electrocardiographic characteristics. These VAs can be successfully ablated within the PSC

    Genome-Wide Association Study on Root Traits Under Different Growing Environments in Wheat (Triticum aestivum L.)

    Get PDF
    Plant roots are critical for water and nutrient acquisition, environmental adaptation, and yield formation. Herein, 196 wheat accessions from the Huang-Huai Wheat Region of China were collected to investigate six root traits at seedling stage under three growing environments [indoor hydroponic culture (IHC), outdoor hydroponic culture (OHC), and outdoor pot culture (OPC)] and the root dry weight (RDW) under OPC at four growth stages and four yield traits in four environments. Additionally, a genome-wide association study was performed with a Wheat 660K SNP Array. The results showed that the root traits varied most under OPC, followed by those under both OHC and IHC, and root elongation under hydroponic culture was faster than that under pot culture. Root traits under OHC might help predict those under OPC. Moreover, root traits were significantly negatively correlated with grain yield (GY) and grains per spike (GPS), positively correlated with thousand-kernel weight (TKW), and weakly correlated with number of spikes per area (SPA). Twelve stable chromosomal regions associated with the root traits were detected on chromosomes 1D, 2A, 4A, 4B, 5B, 6D, and unmapped markers. Among them, a stable chromosomal interval from 737.85 to 742.00 Mb on chromosome 4A, which regulated total root length (TRL), was identified under three growing environments. Linkage disequilibrium (LD) blocks were used to identify 27 genes related to root development. Three genes TraesCS4A02G484200, TraesCS4A02G484800, TraesCS4A02G493800, and TraesCS4A02G493900, are involved in cell elongation and differentiation and expressed at high levels in root tissues. Another vital co-localization interval on chromosome 5B (397.72–410.88 Mb) was associated with not only RDW under OHC and OPC but also TKW

    Multiple biomarkers and arrhythmia outcome following catheter ablation of atrial fibrillation: The Guangzhou Atrial Fibrillation Project.

    Get PDF
    BackgroundBiomarkers have been related to the arrhythmia recurrence following catheter ablation (CA) of atrial fibrillation (AF). We hypothesized that concurrent measurement of several biomarkers would additively improve their predictive value.MethodsOne thousand four hundred and ten consecutive AF patients (68% male; 57.2 ± 11.6 years) undergoing CA were enrolled. Baseline characteristics, serum B type brain natriuretic peptide (BNP) and high sensitivity C reactive protein (hsCRP), estimated glomerular filtration rate (eGFR), ablation parameters, arrhythmia data at discharge, 1, 3, 6, and then every 6 months post CA were collected. Follow-up ended when arrhythmia recurred or until 31st December 2016.ResultsThree hundred and sixty-five (25.9%) patients had arrhythmia recurrence post-CA during a mean follow-up of 20.7 ± 8.8 months. BNP, hsCRP, and eGFR levels and their cut-off values of 237.45 pg/mL, 1.6 mg/dL, and 82.5 mL/min/1.73 m2 were good predictors for AF recurrence (all P P P ConclusionMeasurement of BNP, CRP, and eGFR were incrementally additive to clinical risk factors in a cumulative manner to improve prediction of arrhythmia recurrence post-CA of AF. The implications of poor arrhythmia outcome in AF patients with multiple abnormal biomarkers pre-CA procedure may help with patient selection and inform the likelihood of success or the need of more complicated CA procedure(s)

    Neutrino Physics with JUNO

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purposeunderground liquid scintillator detector, was proposed with the determinationof the neutrino mass hierarchy as a primary physics goal. It is also capable ofobserving neutrinos from terrestrial and extra-terrestrial sources, includingsupernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos,atmospheric neutrinos, solar neutrinos, as well as exotic searches such asnucleon decays, dark matter, sterile neutrinos, etc. We present the physicsmotivations and the anticipated performance of the JUNO detector for variousproposed measurements. By detecting reactor antineutrinos from two power plantsat 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4sigma significance with six years of running. The measurement of antineutrinospectrum will also lead to the precise determination of three out of the sixoscillation parameters to an accuracy of better than 1\%. Neutrino burst from atypical core-collapse supernova at 10 kpc would lead to ~5000inverse-beta-decay events and ~2000 all-flavor neutrino-proton elasticscattering events in JUNO. Detection of DSNB would provide valuable informationon the cosmic star-formation rate and the average core-collapsed neutrinoenergy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400events per year, significantly improving the statistics of existing geoneutrinosamples. The JUNO detector is sensitive to several exotic searches, e.g. protondecay via the pK++νˉp\to K^++\bar\nu decay channel. The JUNO detector will providea unique facility to address many outstanding crucial questions in particle andastrophysics. It holds the great potential for further advancing our quest tounderstanding the fundamental properties of neutrinos, one of the buildingblocks of our Universe

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure
    corecore