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Backfill of cementedwaste rock into undergroundmined-out areas is an effective
way to eliminate solid wastes and potential hazards in mines. To understand the
backfill strength distribution law throughout the stope, similarity simulation
experiments were conducted for direct-irrigating cemented waste rock
backfill, and OpenCV and neural network were employed to analyze particle
segregation and the spatial distribution of backfill strength. Results show that
distinct gravitational segregation leads to an uneven and heterogeneous
distribution of natural graded waste rocks in a similar model. Backfill strength
near sidewalls and bottom of the model surpasses that of other areas. In the
vertical direction, the average backfill strength increases with depth, ranging from
1.15 MPa at the topmost layer to 1.91 MPa at the bottommost layer. Horizontally,
the average backfill strength near model boundaries is consistently higher than
that at the model center, irrespective of the layer depth and orientation. Neural
network prediction on spatial backfill strength proves reliable, exhibiting an
average relative error of 4.12%, compared to the traditional surface fitting with
a 10.20% error. Verification tests affirm the capability of the neural networkmodel
to accurately predict the anisotropic and nonlinear distribution of backfill strength
in a large stope.
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1 Introduction

Mineral resources supply over 80% of industrial and 70% of agricultural raw materials
worldwide. Waste rocks, generated as a by-product of mining, are typically stored in surface
heaps, constituting a significant solid waste stream that consumes extensive land and poses
risks of metal ion leakage. Mined-out areas are another potential hazard in underground
mining. Therefore, the cut-and-fill method is widely employed in underground mining to
optimize mineral resource recovery, enhance mining engineering stability, and control
surface subsidence. It is a safe and environment-friendly mining method in metal mines (Li
and Fall 2016; Li and Fall 2018). Among various backfill methods, cemented waste rock
backfill stands out by combining the advantages of both waste rock and cemented mortar
filling. In this way, waste rocks are transformed to cemented materials in backfilling of
underground mined-out areas. Waste rocks are aggregated with cement slurry or cement
mortar, creating a robust and cohesive filling structure. Cemented waste rock backfill is
distinguished by its substantial filling capacity, high automation levels, straightforward
filling techniques, and system simplicity. Consequently, it is well-suited for large-scale
mined-out areas caused by efficient mining practices such as stage open stoping and
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subsequent filling. The main technical feature of stage open stoping
and subsequent filling is that the ore body is mined in two steps: the
preliminary stope is safely excavated under the self-stable state of the
ore body and the backfill in this preliminary stope serves as the
sidewalls of the secondary stope (Fu and Qiu, 2020). Thus, the filling
body of the preliminary stope must meet the strength requirements
for safe mining of the secondary stope. The backfill strength is
usually used as a key indicator to assess the quality and stability of
the filling body (Roshani and Fall 2020; Xu et al., 2020). However,
due to factors such as the viscosity of the filling slurry, the
complexity of the filling boundary, and the segregation of waste
rocks, the backfill strength is not uniformly distributed throughout
the stope. This non-uniform distribution poses challenges in
ensuring the stability of filling body in larger stopes (Cong et al.,
2007; Ruan et al., 2022). Therefore, understanding the strength
distribution pattern of the filling body in the stope provides a crucial
theoretical basis for backfill strength design. It also enhances the
robust support for secondary stopes, contributing to the overall
stability of the mining structure.

The research on backfill strength worldwide mainly focuses
on the influence of the ratio of filling materials on backfill
strength (Cuthbert et al., 2013; Liu et al., 2018; Liu et al.,
2019; Huang et al., 2022) and the design of backfill strength
(Li, 2013; Cao et al., 2015; Wu et al., 2016; Zhao et al., 2019; Wu
et al., 2021). Comparatively less emphasis has been placed on
understanding the spatial distribution law of backfill strength.
Investigations in this aspect typically involve theoretical analyses,
similarity simulation experiments, and in-situ coring. Notably,
among these methods, similarity simulation experiments are
considered to be the best way to reflect the spatial distribution
law of backfill strength. Chen et al. (2017) studied the uniaxial
compressive strength of cemented tailing filling body in different
positions of a stope from macro and micro perspectives based on
a similarity simulation experiment and found the uniaxial
compressive strength of cemented tailing backfill gradually
decreased from the bottom to the top. Li et al. (2018)
considered that the strength of cemented filling body was
significantly uneven in the longitudinal, transverse, and
vertical directions through the similarity simulation
experiment. Likewise, Jia et al. (2022) studied the strength
spatial distribution of different graded tailings backfill from
horizontal and vertical directions with a similarity simulation
experiment and proposed that the pore number within the
backfill is important for backfill strength.

Scholars have frequently investigated the segregation
mechanism of waste rocks and the spatial distribution of backfill
strength as two independent research topics, without integrating
them organically. However, by taking the waste rock segregation rule
as a basis to verify the internal law and order of the waste rock
distribution in a similar model, it not only ensures the cement slurry
be arranged according to the waste rock segregation situation, but
also enhances the research conclusions of the similar simulation
experiment of cemented waste rock backfill.

As mentioned, research with regards to backfill strength based
on similarity simulation experiments effectively infers the
mechanical phenomena within the stope. However, most
preliminary studies have focused on the strength distribution law
of similar models from a one-dimensional or two-dimensional

direction. Due to the complex mechanism between factors
affecting the backfill strength, it is difficult to establish an
accurate functional relationship through regression equations to
predict backfill strength (Feng et al., 2020). The neural network is
advantageous in predicting nonlinear systems by establishing a
nonlinear mapping relationship between spatial position and
backfill strength and improves the prediction accuracy of backfill
strength. Qi et al. (2018) used a BP neural network to predict the
backfill strength under the influence of tailings type, cement-sand
ratio, and curing time. Ji et al. (2021) successfully achieved high-
precision prediction of indoor backfill strength using a BP neural
network. Recently, Qi et al. (2023) established a global dataset of
unconfined compressive strength of cemented paste backfill
comparing 986 samples and confirmed that a deep neural
network can accurately predict the backfill strength in tailing
disposal. Therefore, the neural network model training based on
the strength test values of similarity simulation experimental
samples can not only predict the missing data in similarity
simulation experiments but also effectively improve the
prediction accuracy of the model for backfill strength.

This work aims to explore the segregation mechanism of waste
rock movement using image processing technology and understand
the spatial distribution of cemented waste rock backfill strength in a
similar large stope. Firstly, waste rock segregation experiments were
carried out, and particle size distribution of the waste rock was
quantitatively characterized by image processing technology. The
internal law and order of the waste rock movement were studied by
analyzing the segregation law. Secondly, based on the segregation
law of waste rock, the similar simulation experiments of cemented
waste rock backfill were carried out. It involved analyzing the
seepage law of cement slurry and examining the spatial
distribution law of backfill strength in different areas of the
model. Thirdly, the strength fitting curved surface of each layered
backfill body was drawn to study the spatial distribution law of
backfill strength throughout the similar model. Finally, the strength
test values from similarity simulation experiments were used as
training samples, and BP neural network was introduced to train the
model of test values. The average relative error of neural network
and surface fitting was compared and analyzed, and the spatial
distribution law of backfill strength was revealed from vertical and
horizontal directions. The spatial distribution laws of backfill
strength of cemented waste rock backfill were measured and

FIGURE 1
Particle size distribution of waste rocks.
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predicted through similarity simulation experiments and BP neural
network predictions.

2 Materials and methods

2.1 Materials

(1) Waste rock and cement

The waste rocks were sampled from the surface waste rock dump
of Changtian gold mine in southwest China. Waste rocks had a
whole grain size of −100 mm (Figure 1), and the rock types were
mainly marl and mudstone. After cutting, crushing, and sieving, the
physical and mechanical properties of the waste rocks were tested, as
shown in Table 1. The cementing material is M32.5 ordinary
Portland cement (Zhenfeng Rendu Cement Co., Ltd.), as shown
in Table 2.

(2) Similar model

The segregation test of waste rock and the similarity simulation
experiments of cemented waste rock backfill were conducted using a
self-made Polyvinyl Chloride (PVC) model. This model was designed
to simulate the spatial distribution characteristics of the strength of
cemented waste rock backfill in a large stope. Changtian gold mine has
stage open stoping and subsequent backfill, with a stope height of 40 m.
Preliminary stope structure parameter is length×wide×height =
20 m ×12 m×40 m, the footwall of the ore body is inclined at 40°,
and the slope of themining area is 62.5 m. If the scale ratio between the
model size and the actual size of themining site is 1:100, itleads that the
model has an inclination angle of 40° and each side length of 200 mm×
120 mm × 625 mm oblique cube model. However, in order to study
whether a targeted cement grout arrangement can effectively
alleviate the adverse effects brought by waste rock
segregation, a larger cube similar simulation model with
length×width×height=500 mm×450mm×625 mm was designed to
carry out the experiments (Figure 2A). The model was made of
PVC with a thickness of 5 mm. The upper surface of the model
was left empty, and the rest of the plates were fixed by slots and glue.
Before the test, they were fastened by thin steel plates and screws. Filter
mesh and a drain hole were set at the bottom of the model to improve
the strength of the filling body by promoting the condensation and
solidification.

The mine employs a direct-irrigating cemented waste rock
backfill, and the filling borehole above the stope is designed near
the stope sidewalls. According to the geometric similarity principle,
the slurry distribution ports of the similarity simulation experiment
model are strategically placed at the four corners of the model, with
distances from the boundary set at 45 mm and 50 mm, respectively.

2.2 Waste rock segregation test based on
image processing

(1) Process of waste rock segregation experiments.
1) Lower −100 mm waste rock into the model through a

simulated filling well above the model and record the
quantity of each drop of waste rock. Take photos of the
waste rock heap using Canon EOS 700D at the top of the
model after every two drops of waste rock and record the
changes in the appearance of the waste rock heap. The photos
have approximately eight million pixels and a solution
of 3,456×2,304.

2) After filling the similar model with waste rocks in step 1,
remove the waste rocks and set the model to its initial state,
then repeat step 1 for another set of waste rock segregation
tests. The first group of experiments accumulated 213.7 kg of
waste rock, and the second group of experiments accumulated
207.3 kg of waste rock.

3) Two sets of 12 images taken by Canon EOS 700D were
cropped and extracted using image processing technology.
The images of the two sets of waste rock segregation
experiments were then processed using OpenCV (Dai
et al., 2022).

(2) Image processing by OpenCV
1) Image partitioning

During the similarity simulation experiment, waste rock
particles with different shapes, particle sizes, and weights move
downward due to gravity and are squeezed and collide, so that the
naturally graded waste rocks with coarse particle sizes and fine
particle sizes are gathered in different areas. OpenCV is capable of
quantitatively identifying waste rock fragments and then analyzing
the rock segregation. Firstly, the OpenCV is used to binarize the top
view of the waste rock heap (Figure 3A), and the outline of the waste
rock is extracted to obtain the OpenCV processing map of the
surface of the waste rocks (Figure 3B).

To analyze the particle size distribution of waste rocks in the
middle and surrounding areas of the waste rock heap, the image was
partitioned and three concentric circles with a radius ratio of 1:2:
3 were drawn at the center of the image (Figure 3B). Four regions
with the waste rock heap and three concentric circles as boundaries
were obtained (Figure 4), and the changes in particle size
distribution of waste rocks were compared as the boundary
gradually approached the surrounding area of the waste rock heap.

There is an inclusion relationship between the partitions
(Figure 4). The partitions enclosed by the large concentric circle
contain the partitions of the small concentric circle. The distribution
law of waste rock is measured in the center and surrounding areas by
studying the particle size distribution law of each partition.
However, waste rocks located near the partition boundary are cut

TABLE 1 Physical and mechanical properties of waste rock.

Indicator Water
content (%)

Density/
(g/cm3)

Porosity
(%)

Uniaxial
compressive
strength/MPa

Poisson’s
ratio

Cohesive
strength/MPa

Internal
friction
angle/°

Parameter 0.12 2.67 2.49 48.48 0.31 10.68 43
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by concentric circles in the partition. Therefore, if the images of each
partition are directly output on the basis of the original image for
contour recognition and calculation, it will cause significant errors.
It is necessary to further define the problem of waste rock partition
attribution.

2) Maximum particle size algorithm

The diameter of the convex polygon is the maximum distance
between any two points on the convex polygon, so for the size of waste
rock, its diameter is the maximum distance between two points in the
contour. On the one hand, in the OpenCV library, only the
contourArea and arcLength functions can be used to calculate the
area and perimeter of the extracted contour, respectively, and there is no
function to directly calculate the diameter of the polygon. On the other
hand, although the particle size is usually proportional to the contour
area of the waste rock, the approximate contour area can be used as a
classification indicator for particle size. The contourArea function
within OpenCV relies on the underlying principle of utilizing
Green’s formula for area calculation. The fundamental requirement
for applying Green’s formula is that the contour is closed and oriented
in a forward manner. Additionally, the integrand function must exhibit
continuity within the plane region where it is situated. Hence, the
contourArea function presents an issue in not accurately calculating the
contour area for certain contours.

Therefore, it is necessary to write algorithms suitable for
measuring the particle size of waste rocks based on the image
processing library. The input of this function is the contour
coordinate points returned by the findContours function, and the
output is the contour diameter (the maximum distance between two
points). The specific algorithm is as follows:

1) Initialize the distanceMax variable to store amaximum particle
size value of 0.

2) Start with the starting point of the contour list.
3) Traverse the other coordinate points and calculate the Euclidean

distance between the starting point and the traversing point in
sequence. If it is greater than distanceMax, update distanceMax
using this Euclidean distance.

4) Replace the next point as the starting point and repeat step 4).
5) Output distanceMax.

The schematic diagram of this algorithm is shown in Figure 5. This
figure takes the square “diameter”with a side length of 1 as an example.
Firstly, starting from point O, the Euclidean distances of OA, OB, and
OC are calculated in sequence. After calculation, distanceMax is
updated to √2 when OB is used. Take point A next to point O as
the start and calculate the Euclidean distances of AB and AC in
sequence. Since these two-line segments are not greater than √2,
the distanceMax value remains unchanged. Finally, use point B as
the starting point to calculate the Euclidean distance of BC. After

completing three rounds of calculations, the output distanceMax value
is √2, which means the “diameter” of the square is √2.

3) Partition membership problem

Waste rocks located at the partition boundaries are divided into
two parts (Figure 6A). Hence, during image processing, it is advisable
to process the entire image as a whole rather than handling individual
images for each partition separately. For the waste rock on the
boundary point, the midpoint coordinate between the two points
corresponding to the maximum particle size is employed as the basis
for judging themembership of the waste rock partition. The schematic
diagram of waste rock region is shown in (Figure 6B). Taking a circle
as an example, the midpoint between the two points corresponding to
the maximum particle size is the circle center, such as circles B, C, and
D. Even if located on the boundary of the region, B can be divided into
the left area based on its center position, and circles C and D can be
divided into the right area.

2.3 Similarity simulation experiment of
cemented waste rock backfill

Direct-irrigating cemented waste rock backfill refers to directly
irrigating prepared cement slurry onto the waste rock heaps within
the stope through filling boreholes. To improve the cemented
quality, extra cement slurry is supplemented every 5 m of waste
rock layer. The cement slurry penetrates into the depth due to
gravity and aggregates the waste rock layer. To investigate whether a
targeted cement slurry arrangement can effectively alleviate the
adverse effects of waste rock segregation, the cement slurry is
lowered from around the model. The process of the direct-
irrigating cemented waste rock backfill is as follows:

(1) -100 mm full-size waste rock is laid down to the stope center
through a simulated small filling shaft above the mode.

(2) The gaps around the waste rock heap are filled with waste rock
in full particle size of −100 mm, and the whole model is filled
with a total of 236.8 kg waste rock.

(3) The water-to-cement ratio of 1.22 and cement-to-waste rock
ratio of 0.11 is recommended in the previous filling ratio test.
According to this ratio, 31.78 kg of water and 26.08 kg of
cement are weighed, and the uniform cement slurry is
prepared by JW350 flat mixer at a speed of 13 R/min.

(4) Around the model (1/10 of the boundary), the cement slurry
is irrigated through a simulated filling borehole by means of a
discharge funnel (250 mm and 10 mm in diameter for the
upper and lower openings, respectively). The designed filling
flow in Changtian gold mine is 41.8 m3/h, and the feeding rate
of cement slurry is calculated as 2.79 L/min according to the
Froude similarity criterion.

TABLE 2 Technical parameters of M32.5 ordinary Portland cement.

Indicator Sulfur
trioxide

80 μm residue
on sieve

Chloride ion
content

Initial setting
time/min

Final setting
time/min

R3
strength/

MPa

R28
strength/

MPa

Parameter ≤3.5% ≤10% ≤0.06% ≥60 ≤720 ≥10 ≥32.5
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(5) Filling body is cultured under standard curing conditions at
(20 ± 2)°C and >95% humidity. After curing for 28 days, the
PVC plate is carefully disassembled, and the filling body is cut
into a number of 100 mm×100 mm×100 mm cube standard
test blocks according to different depths and horizontal
distances. All blocks are marked with sequential numbers.

(6) According to the Standard for Test Methods of Engineering
Rock Masses (GBT 50266-2013) and the method
recommended by the International Commission on Rock
Mechanics (International Society for Rock Mechanics,
ISRM), the uniaxial compressive strength of backfill is
tested by QKX-ZSZ-4000 true triaxial dynamic and static

loading test system (Qingdao Qiankunxing intelligent
technology Co., Ltd.).

2.4 Neural network prediction for spatial
distribution of backfill strength

Engineering cases reveal that segregation occurs during the
loading of waste rocks into the stope, leading to uneven
infiltration and cementation during the penetration of cement
slurry. This results in the heterogeneity of the spatial distribution
of backfill strength. Due to the use of a low cement-to-sand ratio,

FIGURE 2
Similarity simulation model and experimental flow chart. (A) Similarity simulation model preparation. (B) Top view of similarity model. (C) Model
disassembly after 28 days. (D) Backfill sample cutting. (E) Backfill strength test.

FIGURE 3
Solid diagram and OpenCV processing diagram on the top of the waste rock heap [red line in (B) refers to the outline line of waste rocks, white area
refers to the surface area of each waste rock]. (A) Size distribution map at the surfacetop of waste rock heap (B) OpenCV processing map of 200 the
surfacetop of the waste rock heap.
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achieving complete cementation among rocks becomes difficult.
Hence, based on the results of the similarity simulation experiment,
a BP neural network is introduced to predict the spatial distribution
law of backfill strength in the large stope.

The multi-layer BP neural network structure comprises an input
unit, an output unit, and one or a plurality of hidden layers; the main
principle is based on an error back propagation algorithm. The
multilayer BP neural network learns the mapping relationship

implied by the input and the output in a training sample without
describing the mapping relationship through a mathematical equation
in advance and has good nonlinear learning ability. In addition, it
efficiently and accurately solves the problem of nonlinear regression
prediction and has high reliability in predicting the backfill strength.

Considering the size of the similar model is
500 mm×450 mm×625 mm, and the sampling size of the filling is
100 mm×100 mm×100 mm, the model is vertically divided into six

FIGURE 4
Diagram of each area on the surface of the waste rock heap. (A) Region Ⅰ (B) Region Ⅱ (C) Region Ⅲ (D) Region Ⅳ.

FIGURE 5
Schematic diagram of the algorithm for traversing the particle size of waste rocks. Normalize the particle size of waste rocks using 20%, 40%, 60%,
and 80% of the maximum contour particle size of all waste rocks as boundary points, and divide the particle size distribution into five particle size
distribution ranges: 0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.

FIGURE 6
Waste rock partition: (A) Waste rocks at partition boundaries, (B) Partitioned affiliation of waste rocks.
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layers (Z1~Z6) from the bottom up. A total of 16 filling blocks are
obtained (Figure 7).

In the BP neural network, a four-layer feedforward network
structure with feedback is constructed using Keras. The architecture
consists of an input layer, two hidden layers, and an output layer, all
fully connected. The input layer, represented by X, Y, and Z, denotes
the position of the sample in the model space, resulting in three units
in the input layer, while the output layer represents the uniaxial
compressive strength of backfill.

After multiple iterations and adjustments, the number of units in
the two hidden layers was finalized as 24 and 12. To prevent gradient
dispersion and accelerate training, Rectified Linear Unit (ReLU) is
employed as the activation function, defined as Relu(x)=max (x, 0). The
loss function adopts mean squared error, and the model’s predictive
ability is assessed using Mean Absolute Error (MAE).

3 Results and discussion

3.1 Segregation of waste rock particles

Based on the above particle size distribution range, contour
extraction, area calculation, and classification statistics are
performed on the four regions respectively, and the particle size
distribution table of each region could be obtained
(Table 3; Table 4).

Table 3 and Table 4 show that, firstly, the particle size of the waste
rock at each region ismainly distributed in the range of 0–0.2, indicating
that most of the waste rock surface area is less than 20% of the
maximum area. Secondly, the particle size range of the waste rock
in region I is all within 0–0.2, the particle size range of the waste rock in
region II ismainly in the range of 0–0.2, and the particle size of the waste

FIGURE 7
Backfill sampling and sequencing in the similar model.

TABLE 3 Particle size distribution at each region (first group).

Region particle size particle size 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

Region Ⅰ 248 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Region Ⅱ 1,089 (98.37%) 9 (0.81%) 4 (0.36%) 5 (0.45%) 0 (0%)

Region Ⅲ 2,573 (97.65%) 43 (1.71%) 6 (0.23%) 8 (0.30%) 3 (0.11%)

Region Ⅳ 3,428 (96.87%) 67 (1.89%) 22 (0.62%) 13 (0.37%) 9 (0.25%)

TABLE 4 Particle size distribution at each region (second group).

Region particle size 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1

Region Ⅰ 180 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Region Ⅱ 931 (97.70%) 13 (1.36%) 7 (0.73%) 2 (0.21%) 0 (0%)

Region Ⅲ 2,237 (96.70%) 52 (2.25%) 11 (0.48%) 8 (0.35%) 5 (0.22%)

Region Ⅳ 3,340 (96.39%) 63 (1.82%) 36 (1.04%) 15 (0.43%) 11 (0.32%)
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rock in region IV is distributed in all five particle size ranges. With
a gradual increase of the region range, the upper limit of particle
size gradually increases to a certain extent. It indicates that the
particle size of the waste rock around the top waste rock heap is
large. Finally, with the gradual increase of the region range,
although the number of waste rocks in 0–0.2 particle size range
gradually increased, the proportion of the two groups of
experiments decreases from 100% to 96.87 in Region I and
96.39% in Region IV. It indicates that with the increase of
regional range, the newly added coarse waste rock dilutes the
proportion of fine waste rock. Additionally, waste rock particle size
at the top center of the heap is relatively small, and the surrounding
waste rock particle size is larger than that in the center. Similar
spatial distribution law of waste rocks is consistent with a field
observation at Kidd Creek mine. Fine particles are detained near
the filling shaft where cemented rock backfill is applied, while
coarse particles tend to gather near stope sidewalls.

When waste rocks roll along the slope surface of a waste rock
heap, grooves are formed between large particles and the slope.
Small particles, with lower mass and kinetic energy, experience
resistance when encountering these grooves, leading to restricted
movement distance. As shown in Figure 3, the green area has fewer
large particles, allowing small particles to flow over a greater
distance. In contrast, the red area shows large particles forming
uneven grooves on the heap surface, hindering the continuous flow
of small particles.

3.2 Heterogeneous cementation of
waste rocks

The similar model height is far lower than that of onsite stope,
and the internal porosity of −100 mm full-size waste rock heap is
higher than 50%. Therefore, there is no noticeable occurrence of
interlayer extrusion and deposition phenomenon under the
natural graded waste rock in the similar model. The cement
slurry penetration channel is smooth; it quickly penetrates to
the model bottom even with a slight flow rate. At the top of the

model, since the cement slurry outlets are distributed around the
surface of the model, the transverse penetration distance of the
cement slurry at the top of the waste rock heap is limited, and the
interactive period between cement slurry and waste rocks at the top
is short. This results in incomplete contact of certain waste rocks
and cement slurry and a suboptimal cementation effect. The
model’s bottom serves as an impermeable layer, similar to the
on-site stope floor, causing cement slurry to gradually accumulate
at the model bottom due to gravity. Hence, the contact time and
contact area between cement slurry and waste rocks therein are
maximized, resulting in higher cementation strength at the
bottom. In addition, the sidewalls of the filling body after
formwork disassembly reveal a distinctive honeycombed pattern
above the cemented saturation line. In this zone, the cement
content and cementation effect are inferior compared to those
below the cemented saturation line.

Additionally, since the seepage of cement slurry is suspended at
model sidewalls, waste rock particles near sidewalls have a longer
contact and cementation time with cement slurry, and finally form
a “backfill shell” with high integrity and strength. In the stage open
stoping and subsequent backfill, sidewalls of secondary stopes are
equivalent to PVC glass in the similarity simulation experiment.
The stope sidewall, characterized by small pores and good
integrity, facilitates thorough contact between the cement slurry
and nearby waste rocks nearby. This tendency promotes the
formation of a “backfill shell” with intact shapes and higher
backfill strength (Figure 2C).

Due to the gravity segregation of natural graded waste rocks,
coarse rocks tend to roll near the stope sidewalls and fine particles
are gathered at the stope center. There is little cohesion among waste
rock particles before cementation, making the waste rock heap a
loose medium with large porosity. Especially if stope sidewall areas
are not filled with enough intact coarse particles, sufficient
supporting provided by cemented waste rock backfill at the
preliminary stope may fail in mining the secondary stope. As
shown in Figure 8, the sidewall areas and “backfill shell” at the
preliminary stope play a role of contact and lateral support for the
secondary stope, regardless of the relatively low backfill strength at

FIGURE 8
Coarse particles gather near sidewalls and fine particles remain in center areas due to gravity segregation of waste rock in stope.
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the central preliminary stope. The cemented waste rock backfill
forms a complete support structure and turns the stress state of the
secondary stope from uniaxial or biaxial to biaxial or triaxial. In this
case, the self-stabilization ability of the unmined ore body is
enhanced, and the sudden instability and chain failure of
surrounding rocks are avoided. Therefore, the “backfill shell”
with high strength formed between preliminary and secondary
stopes provides a reliable support for successive mining.
Additionally, the stable backfill shell allows lower backfill
strength in the central area of the stope, which is conducive to
reducing cement consumption and filling costs.

3.3 Tested backfill strength of
similarity model

The filling body in the similar model is cultured for 28 days
under standard culturing environment conditions before
sampling and testing for uniaxial compressive strength. The
similar model is segmented into six layers, each 100 mm
height from the bottom upwards. The top layer Z5~Z6 has
relatively less cement content and poor cementation effect and
is partially unstable due to the cutting vibration of the bottom
layer Z1~Z4. The uniaxial compressive strength results of
100 mm×100 mm×100 mm backfill blocks of Z1~Z6 layers are
shown in Table 5.

According to Table 5, the least square method is used to fit the
surfaces of Z1~Z4 layers with many samples, and the uniaxial
compressive strength regression equations of Z1~Z4 layers

of waste rock cemented backfill specimens are obtained as
Eqs 1–4):

σZ1 � 0.257x2 + 0.106xy + 0.334y2 − 1.560x − 1.868y

+ 5.364 R2 � 0.817( ) (1)
σZ2 � 0.317x2 + 0.052xy + 0.278y2 − 1.665x − 1.617y

+ 5.195 R2 � 0.808( ) (2)
σZ3 � 0.157x2 + 0.094xy + 0.239y2 − 1.027x − 1.468y

+ 4.376 R2 � 0.722( ) (3)
σZ4 � 0.156x2 + 0.017xy + 0.361y2 − 0.857x − 1.825y

+ 4.226 R2 � 0.853( ) (4)

where σZ1, σZ2, σZ3, and σZ4 are, respectively, the uniaxial
compressive strength of waste rock cemented backfill at Z1, Z2,
Z3, and Z4 layers, MPa; x is the distance along the direction of AB
(EF) from origin point A (E) at front of the model, dm; y is the
distance along the direction of AD (EH) from origin point A (E) at
the side of the model, dm.

The fitting surface (Figure 9) of the backfill strength at
Z1~Z4 layers shows that the backfill strength at the sidewalls and
model bottom is higher than that of other areas, and the backfill
strength below four slurry irrigation outlets is higher than that of
other areas in the same layer, while the backfill strength in the
central is lowest regardless of any layer. The backfill strength at
the bottom of the preliminary stope and its contact area with the
secondary stope is higher, while the backfill strength in the middle
section is lower. This phenomenon of the high strength of “backfill
shell” due to the segregation of waste rock particles meets the design

TABLE 5 Tested backfill strength in different positions in the similarity simulation experiment of direct-irrigating cemented waste rock backfill.

No. Uniaxial compressive strength of cemented waste rock backfill (MPa)

Z1 Z2 Z3 Z4 Z5 Z6

1 2.55 2.42 2.17 1.89 - 1.53

2 1.96 1.78 1.88 1.63 1.38 -

3 1.94 1.76 1.65 1.54 1.43 -

4 2.31 2.01 1.88 1.93 - 1.66

5 1.84 1.76 - 1.65 1.32 -

6 1.54 1.73 1.56 - - 0.87

7 1.32 - 1.15 0.72 - -

8 1.63 1.48 1.27 - - -

9 - 2.08 1.75 1.82 1.58 1.29

10 1.02 1.17 - 0.92 - -

11 - 0.72 1.32 1.07 0.95 -

12 2.65 - 2.14 1.93 - 1.87

13 2.32 2.42 2.12 1.98 - 1.74

14 1.65 - 1.33 1.06 1.18 0.95

15 1.74 1.85 1.56 - 1.24 1.03

16 2.81 2.63 2.34 2.06 1.75 -
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requirements of backfill strength in different positions of on-
site stopes.

4 Prediction of backfill strength
distribution by neural network

4.1 Model training and prediction

Constrained by the scale of the similarity simulation and the
limited number of backfill samples, the average relative error
between the surface fitting results and the measured strength of
Z1~Z4 layers of cemented waste rock backfill is about 10.20%. The
traditional mathematical method proves ineffective in accurately
predicting the backfill strength at Z5 and Z6 layers, indicating a weak
generalization ability. Fortunately, BP neural network is introduced
to train data at Z1~Z4 layers to reduce the relative error of backfill
strength prediction at Z1~Z4 layers and improve the generalization
ability of backfill strength prediction at Z5~Z6 layers, thus reliably

predicting the strength distribution characteristics of backfill
throughout the large stopes with high section height.

(1) Model training

To avoid overfitting of the neural network to training data and
reduce the generalization performance, the backfill strength at Z1,
Z2, Z3, and Z4 layers with more samples is chosen as test value
(Table 6), and the strength at Z5~Z6 layers with less samples is taken
as test set to obtain 54 groups of neural network training samples
(Table 7). The input of the sample is the spatial coordinate of the
sample according to the coordinate axis in Figure 7, and the output is
the uniaxial compressive strength of the sample.

The neural network model is constructed based on the training
samples to predict the backfill strength. In the model training process,
the MAE index is used to optimize the neural network parameters,
and the MAE curve is smoothed by the exponential smoothing
method to obtain a smooth error function curve. The relative error
between the error function after neural network training and the

FIGURE 9
Strength fitting curves of cemented waste rock backfill at (A) Z1 layer, (B) Z2 layer, (C) Z3 layer and (D) Z4 layer in similarity simulation model.
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predicted value of each sample is shown in Figure 10. Figures 10A,B
suggests that MAE converges below 0.1 when the training iteration is
1,000 times, while Figure 10B suggests that the relative error of the
predicted value of each sample is basically lower than 8%, and the
average relative error is as low as 4.12%, indicating a good learning
effect on the training samples. Therefore, compared with the curved
surface fitting method for the backfill strength at each layer in the
similarity simulation experiment, the neural network model improves
the accuracy of backfill strength prediction in the stope, and the
average relative error of the training sample prediction is reduced
from 10.20% to 4.12%.

To verify the accuracy of BP neural network model, 16 groups of
strength test values at Z5~Z6 layers in Table 5 are selected as the test
set, and the trained neural network model is used to predict the test
set. According to the test value, predicted value, and relative error of

each sample in the test set (Table 7), the average relative error of the
training set is calculated to be 12.86%, indicating that the established
neural network model for backfill strength prediction has good
generalization ability.

(2) Model prediction

The trained neural network model is used to predict
32 groups of samples at Z5 and Z6 layers, and prediction
results are shown in Table 8. Based on the prediction results,
the Gaussian elimination method is chosen to fit the multivariate
quadric surface of the prediction results at Z5 and Z6 layers
(Figure 11). Fitting surface implies that the cemented backfill
strength at each layer is featured by high strength near sidewalls
and low strength in central areas.

TABLE 6 Neural network training samples of cemented waste rock backfill strength.

No. X Y Z Uniaxial compressive strength/MPa No. X Y Z Uniaxial compressive strength/MPa

1 1 1 1 2.55 28 1 1 3 2.17

2 1 2 1 1.96 29 1 2 3 1.88

3 1 3 1 1.94 30 1 3 3 1.65

4 1 4 1 2.31 31 1 4 3 1.88

5 2 1 1 1.84 32 2 2 3 1.56

6 2 2 1 1.54 33 2 3 3 1.15

7 2 3 1 1.32 34 2 4 3 1.27

8 2 4 1 1.63 35 3 1 3 1.75

9 3 2 1 1.02 36 3 3 3 1.32

10 3 4 1 2.65 37 3 4 3 2.14

11 4 1 1 2.32 38 4 1 3 2.12

12 4 2 1 1.65 39 4 2 3 1.33

13 4 3 1 1.74 40 4 3 3 1.56

14 4 4 1 2.81 41 4 4 3 2.34

15 1 1 2 2.42 42 1 1 4 1.89

16 1 2 2 1.78 43 1 2 4 1.63

17 1 3 2 1.76 44 1 3 4 1.54

18 1 4 2 2.01 45 1 4 4 1.93

19 2 1 2 1.76 46 2 1 4 1.65

20 2 2 2 1.73 47 2 3 4 0.72

21 2 4 2 1.48 48 3 1 4 1.82

22 3 1 2 2.08 49 3 2 4 0.92

23 3 2 2 1.17 50 3 3 4 1.07

24 3 3 2 0.72 51 3 4 4 1.93

25 4 1 2 2.42 52 4 1 4 1.98

26 4 3 2 1.85 53 4 2 4 1.06

27 4 4 2 2.63 54 4 4 4 2.06
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4.2 Spatial distribution law of
backfill strength

Combining the tested backfill strength in similarity simulation
experiments and prediction values by neural network model, the
strength distribution of the “backfill shell” and the distribution law
of filling body in vertical and horizontal directions are further studied.

(1) Backfill strength throughout the similar model

The backfill strength accumulation histogram of the similar
model with a size of 500 mm×450 mm×625 mm is obtained
(Figure 7). It shows that the average backfill strength near model
sidewalls is 1.73 MPa, which is higher than that of the central area

(1.08 MPa). With respect to the “backfill shell” (11, 12, 13, 14 or 11,
21, 31, 41, etc.) formed at model boundaries, the average strength of
the east, west, south, and north parts is 1.80 MPa, 1.91 MPa,
1.79 MPa, and 1.75 MPa, respectively, which is higher than that
of the central area. In addition, backfill strength increases as depth
from model upper surface increases, and backfill strength at deeper
layers is higher than that at shallower layers in the same coordinate.

Furthermore, backfill strength distribution of the “backfill shell” at
four sidewalls (Figure 12) indicates a distribution law of “double hook
function” (f(x) =ax+B/x (x>0)). Again, it confirms that backfill strength
at the stope bottom and sidewalls is greater than in other areas.

(2) Backfill strength distribution in vertical and horizontal
directions

TABLE 7 Relative error of cemented waste rock backfill strength in neural network validation.

No. X Y Z Test value Predicted value Relative error/%

1 1 2 5 1.38 1.39 0.72

2 1 3 5 1.43 1.40 2.10

3 2 1 5 1.32 1.63 23.48

4 3 1 5 1.58 1.64 3.80

5 3 3 5 0.95 0.73 23.16

6 4 2 5 1.18 0.87 26.27

7 4 3 5 1.24 1.26 1.61

8 4 4 5 1.75 1.78 1.71

9 1 1 6 1.53 1.51 1.31

10 1 4 6 1.66 1.40 15.66

11 2 2 6 0.87 1.07 22.99

12 3 1 6 1.29 1.46 13.18

13 3 4 6 1.87 0.98 47.59

14 4 1 6 1.74 1.82 4.60

15 4 2 6 0.95 0.82 13.68

16 4 3 6 1.03 1.07 3.88

FIGURE 10
Absolute error (A) and relative error (B) in predicting backfill strength of the similarity simulation experiment with neural network model.
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The similar model is divided into Z1~Z6 layers from bottom
up, and the distribution law of cemented waste rock backfill
strength in the vertical direction can be obtained by taking the
average value of tested strength or predicted strength at each
layer, as shown in Figure 13A. Backfill strength generally
increases with the increase of the depth in the similar model,
and the average strength gradually increases from 1.15 MPa at the
topmost Z6 layer to 1.91 MPa in the bottommost Z1 layer. The
vertical backfill strength distribution is primarily characterized by the

gradual flow and deposition of cement slurry towards the lower part of
themodel due to gravity. This phenomenon leads to the highest cement-
to-sand ratio of waste rock cementation at the bottom.

Similarly, the average backfill strength at the same position (X, Y) on
each layer in the similar model is taken, and the response surface fitting
of each average value is carried out to establish the strength distribution
pattern in a horizontal direction, as shown in Figure 13B. The results
reveal lower backfill strength in central areas and higher strength near
the sidewalls. This phenomenon is attributed to the distribution of

TABLE 8 Prediction results of cemented waste rock backfill strength at Z5 and Z6 layers based on neural network.

No. X Y Uniaxial compression strength at Z5 layer (MPa) Uniaxial compression strength at Z6 layer (MPa)

1 1 1 1.71 1.51

2 1 2 1.39 1.20

3 1 3 1.40 1.24

4 1 4 1.72 1.40

5 2 1 1.63 1.43

6 2 2 1.23 1.07

7 2 3 0.79 0.70

8 2 4 0.95 0.75

9 3 1 1.64 1.46

10 3 2 0.85 0.85

11 3 3 0.73 0.65

12 3 4 1.51 0.98

13 4 1 1.98 1.82

14 4 2 0.87 0.82

15 4 3 1.26 1.07

16 4 4 1.78 1.49

FIGURE 11
Fitting surface of cemented waste rock backfill strength at (A) Z5 layer and (B) Z6 layer based on neural network model prediction.
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cement slurry through outlets around the model. However, due to
seepage obstruction, the slurry suspends and deposits near the sidewalls.
Thus, cementation time and areas of waste rocks and cement slurry
below the outlet increase, resulting in an overall higher backfill strength
below the outlet compared to other areas at the same level.

The in-situ waste rock pass is generally arranged above the
stope center. During distributing, moving, and settling, coarse
particles move to stope sidewalls by gravity segregation, while
fine particles usually stay near the falling point. This difference
leads to a segregate and uneven settlement of waste rock heap
within the stope. The backfill strength distribution law in
horizontal direction indicates that when cement slurry outlet
is arranged at stope corners, cement slurry flows more evenly in
the stope. It is also beneficial to form a “backfill shell” with
higher strength at the junction of preliminary and secondary

stopes, thus improving the overall cemented filling effect of
waste rocks.

The vertical backfill strength distribution law shows that the
layered periodic slurry distribution should be adopted in filling
practice. For example, cement slurry should be supplemented to the
waste rock heap every 5 m in the stope. Through the layered slurry
distribution, cement slurry is hydrated and cemented in the same
layer of waste rock heap, and a filling body with certain strength and
small porosity is formed after initial setting. The slurry at the next
distribution round is then alleviated to gather at the stope bottom,
improving the homogeneous distribution of the cement slurry in a
vertical direction. On the other side, the chemical reaction time and
contacting area of cementing material and waste rocks are enhanced
through layered slurry distribution. In this way, cemented waste
rock backfill quality at large stopes can be improved.

FIGURE 12
“Backfill shell” strength distribution in similar model in the perspective of four directions. (A) East sidewall (450 mm × 625 mm), (B) West sidewall
(450 mm × 625 mm), (C) South sidewall (500 mm × 625 mm) and (D) North sidewall (500 mm × 625 mm).
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5 Conclusion

(1) The binarization processing of waste rock contours using
OpenCV reveals that the distinct segregation occurs in the
full-size waste rock during the filling process. Fine particles
are detained near the filling shaft, while coarse particles tend
to flow around. The gravity compaction and natural settlement
of waste rocks between layers are minimal, and cement slurry
smoothly penetrates to the model bottom, despite the low flow
rate. A “backfill shell” with high strength tends to form at the
boundary of the similar model. Cementing time and contacting
area between rock particles and cement slurry have a direct
impact on backfill strength.

(2) As the statistical partition range of waste rock images gradually
increases, the upper limit of waste rock particle size gradually
increases. For instance, region I only contains waste rocks with
particle sizes ranging from 0 to 0.2, while region IV contains
waste rocks with various particle sizes. The proportion of small
particle size waste rocks in Region I and Region IV is 100% and
96.87%, respectively, in the first group. As the range of statistical
regions increases, the presence of coarse particles dilutes the
proportion of fine particles. This quantitative observation
indicates a scenario where the middle waste rock has a fine
particle size while the surrounding waste rock has a coarse
particle within the waste rock heap.

(3) Tested backfill strength in similarity simulation experiments are
set as training samples; the neural network is employed to train
the model and predict backfill strength distribution throughout
the similar model. The average absolute error of the model in the
training set converges to lower than 0.1, the average relative error
in the test set is 12.86%, and the average relative error reduces
from 10.20% in traditional surface fitting to 4.12% in the neural
network model. The neural network model is capable of
predicting nonlinear problems with high accuracy, with which
the predicted backfill strength is consistent with actual results.

(4) The backfill strength near the sidewalls and at the bottom of the
similar model is higher than in other areas. In the vertical
direction, the average backfill strength increases with increasing
depth, ranging from 1.15MPa at the topmost layer to 1.91MPa at

the bottommost layer. In the horizontal direction, the average
backfill strength near model boundaries is consistently higher
than that in the model center regardless of sampled layer depth.
Backfill strength at the bottom and boundaries of the “backfill
shell” is higher than in the central areas.
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