4 research outputs found
The LOFAR Two-Metre Sky Survey (LoTSS): VI. Optical identifications for the second data release
The second data release of the LOFAR Two-Metre Sky Survey (LoTSS) covers 27%
of the northern sky, with a total area of deg. The high
angular resolution of LOFAR with Dutch baselines (6 arcsec) allows us to carry
out optical identifications of a large fraction of the detected radio sources
without further radio followup; however, the process is made more challenging
by the many extended radio sources found in LOFAR images as a result of its
excellent sensitivity to extended structure. In this paper we present source
associations and identifications for sources in the second data release based
on optical and near-infrared data, using a combination of a likelihood-ratio
cross-match method developed for our first data release, our citizen science
project Radio Galaxy Zoo: LOFAR, and new approaches to algorithmic optical
identification, together with extensive visual inspection by astronomers. We
also present spectroscopic or photometric redshifts for a large fraction of the
optical identifications. In total 4,116,934 radio sources lie in the area with
good optical data, of which 85% have an optical or infrared identification and
58% have a good redshift estimate. We demonstrate the quality of the dataset by
comparing it with earlier optically identified radio surveys. This is by far
the largest ever optically identified radio catalogue, and will permit robust
statistical studies of star-forming and radio-loud active galaxies.Comment: 29 pages. Accepted by A&A; data products available at
https://lofar-surveys.org/dr2_release.htm
The LOFAR Two-Metre Sky Survey (LoTSS):VI. Optical identifications for the second data release
The second data release of the LOFAR Two-Metre Sky Survey (LoTSS) covers 27% of the northern sky, with a total area of deg. The high angular resolution of LOFAR with Dutch baselines (6 arcsec) allows us to carry out optical identifications of a large fraction of the detected radio sources without further radio followup; however, the process is made more challenging by the many extended radio sources found in LOFAR images as a result of its excellent sensitivity to extended structure. In this paper we present source associations and identifications for sources in the second data release based on optical and near-infrared data, using a combination of a likelihood-ratio cross-match method developed for our first data release, our citizen science project Radio Galaxy Zoo: LOFAR, and new approaches to algorithmic optical identification, together with extensive visual inspection by astronomers. We also present spectroscopic or photometric redshifts for a large fraction of the optical identifications. In total 4,116,934 radio sources lie in the area with good optical data, of which 85% have an optical or infrared identification and 58% have a good redshift estimate. We demonstrate the quality of the dataset by comparing it with earlier optically identified radio surveys. This is by far the largest ever optically identified radio catalogue, and will permit robust statistical studies of star-forming and radio-loud active galaxies
The LOFAR Two-Metre Sky Survey: VI. Optical identifications for the second data release
The second data release of the LOFAR Two-Metre Sky Survey (LoTSS) covers 27% of the northern sky, with a total area of ~5700 deg1. The high angular resolution of LOFAR with Dutch baselines (6 arcsec) allows us to carry out optical identifications of a large fraction of the detected radio sources without further radio followup; however, the process is made more challenging by the many extended radio sources found in LOFAR images as a result of its excellent sensitivity to extended structure. In this paper we present source associations and identifications for sources in the second data release based on optical and near-infrared data, using a combination of a likelihood-ratio cross-match method developed for our first data release, our citizen science project Radio Galaxy Zoo: LOFAR, and new approaches to algorithmic optical identification, together with extensive visual inspection by astronomers. We also present spectroscopic or photometric redshifts for a large fraction of the optical identifications. In total 4 116 934 radio sources lie in the area with good optical data, of which 85% have an optical or infrared identification and 58% have a good redshift estimate. We demonstrate the quality of the dataset by comparing it with earlier optically identified radio surveys. This is by far the largest ever optically identified radio catalogue, and will permit robust statistical studies of star-forming and radio-loud active galaxies
The LOFAR Two-Metre Sky Survey (LoTSS) : VI. Optical identifications for the second data release
© 2023 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/The second data release of the LOFAR Two-Metre Sky Survey (LoTSS) covers 27% of the northern sky, with a total area of deg. The high angular resolution of LOFAR with Dutch baselines (6 arcsec) allows us to carry out optical identifications of a large fraction of the detected radio sources without further radio followup; however, the process is made more challenging by the many extended radio sources found in LOFAR images as a result of its excellent sensitivity to extended structure. In this paper we present source associations and identifications for sources in the second data release based on optical and near-infrared data, using a combination of a likelihood-ratio cross-match method developed for our first data release, our citizen science project Radio Galaxy Zoo: LOFAR, and new approaches to algorithmic optical identification, together with extensive visual inspection by astronomers. We also present spectroscopic or photometric redshifts for a large fraction of the optical identifications. In total 4,116,934 radio sources lie in the area with good optical data, of which 85% have an optical or infrared identification and 58% have a good redshift estimate. We demonstrate the quality of the dataset by comparing it with earlier optically identified radio surveys. This is by far the largest ever optically identified radio catalogue, and will permit robust statistical studies of star-forming and radio-loud active galaxies.Peer reviewe