39 research outputs found
A Survey of Extragalactic Faraday Rotation at High Galactic Latitude: The Vertical Magnetic Field of the Milky Way towards the Galactic Poles
We present a study of the vertical magnetic field of the Milky Way towards
the Galactic poles, determined from observations of Faraday rotation toward
more than 1000 polarized extragalactic radio sources at Galactic latitudes |b|
> 77 degs, using the Westerbork Radio Synthesis Telescope and the Australia
Telescope Compact Array. We find median rotation measures (RMs) of 0.0 +/- 0.5
rad/m^2 and +6.3 +/- 0.7 rad/m^2 toward the north and south Galactic poles,
respectively, demonstrating that there is no coherent vertical magnetic field
in the Milky Way at the Sun's position. If this is a global property of the
Milky Way's magnetism, then the lack of symmetry across the disk rules out pure
dipole or quadrupole geometries for the Galactic magnetic field. The angular
fluctuations in RM seen in our data show no preferred scale within the range ~
0.1 to 25 degs. The observed standard deviation in RM of ~ 9 rad/m^2 then
implies an upper limit of ~1microGauss on the strength of the random magnetic
field in the warm ionized medium at high Galactic latitudes.Comment: 38 pages, 7 figures, 3 tables Accepted for publication in ApJ,
Electronic versions of Tables 1 and 2 are available via email from the first
autho
The alignment of molecular cloud magnetic fields with the spiral arms in M33
The formation of molecular clouds, which serve as stellar nurseries in
galaxies, is poorly understood. A class of cloud formation models suggests that
a large-scale galactic magnetic field is irrelevant at the scale of individual
clouds, because the turbulence and rotation of a cloud may randomize the
orientation of its magnetic field. Alternatively, galactic fields could be
strong enough to impose their direction upon individual clouds, thereby
regulating cloud accumulation and fragmentation, and affecting the rate and
efficiency of star formation. Our location in the disk of the Galaxy makes an
assessment of the situation difficult. Here we report observations of the
magnetic field orientation of six giant molecular cloud complexes in the
nearby, almost face-on, galaxy M33. The fields are aligned with the spiral
arms, suggesting that the large-scale field in M33 anchors the clouds.Comment: to appear in Natur
On the Origin of Cosmic Magnetic Fields
We review the literature concerning how the cosmic magnetic fields pervading
nearly all galaxies actually got started. some observational evidence involves
the chemical abundance of the light elements Be and B, while another one is
based on strong magnetic fields seen in high red shift galaxies. Seed fields,
whose strength is of order 10^{-20} gauss, easily sprung up in the era
preceding galaxy formation. Several mechanisms are proposed to amplify these
seed fields to microgauss strengths. The standard mechanism is the Alpha-Omega
dynamo theory. It has a major difficulty that makes unlikely to provide the
sole origin. The difficulty is rooted in the fact that the total flux is
constant. This implies that flux must be removed from the galactic discs. This
requires that the field and flux be separated, for otherwise interstellar mass
must be removed from the deep galactic gravitational and then their strength
increased by the alpha omega theory.Comment: 90 pages and 6 figures; accepted for publication in Reports of
Progress in Physics as an invited revie
Simulations of galactic dynamos
We review our current understanding of galactic dynamo theory, paying
particular attention to numerical simulations both of the mean-field equations
and the original three-dimensional equations relevant to describing the
magnetic field evolution for a turbulent flow. We emphasize the theoretical
difficulties in explaining non-axisymmetric magnetic fields in galaxies and
discuss the observational basis for such results in terms of rotation measure
analysis. Next, we discuss nonlinear theory, the role of magnetic helicity
conservation and magnetic helicity fluxes. This leads to the possibility that
galactic magnetic fields may be bi-helical, with opposite signs of helicity and
large and small length scales. We discuss their observational signatures and
close by discussing the possibilities of explaining the origin of primordial
magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic
fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria
Turbulence and galactic structure
Interstellar turbulence is driven over a wide range of scales by processes
including spiral arm instabilities and supernovae, and it affects the rate and
morphology of star formation, energy dissipation, and angular momentum transfer
in galaxy disks. Star formation is initiated on large scales by gravitational
instabilities which control the overall rate through the long dynamical time
corresponding to the average ISM density. Stars form at much higher densities
than average, however, and at much faster rates locally, so the slow average
rate arises because the fraction of the gas mass that forms stars at any one
time is low, ~10^{-4}. This low fraction is determined by turbulence
compression, and is apparently independent of specific cloud formation
processes which all operate at lower densities. Turbulence compression also
accounts for the formation of most stars in clusters, along with the cluster
mass spectrum, and it gives a hierarchical distribution to the positions of
these clusters and to star-forming regions in general. Turbulent motions appear
to be very fast in irregular galaxies at high redshift, possibly having speeds
equal to several tenths of the rotation speed in view of the morphology of
chain galaxies and their face-on counterparts. The origin of this turbulence is
not evident, but some of it could come from accretion onto the disk. Such high
turbulence could help drive an early epoch of gas inflow through viscous
torques in galaxies where spiral arms and bars are weak. Such evolution may
lead to bulge or bar formation, or to bar re-formation if a previous bar
dissolved. We show evidence that the bar fraction is about constant with
redshift out to z~1, and model the formation and destruction rates of bars
required to achieve this constancy.Comment: in: Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning
Fork strikes a New Note, Eds., K. Freeman, D. Block, I. Puerari, R. Groess,
Dordrecht: Kluwer, in press (presented at a conference in South Africa, June
7-12, 2004). 19 pgs, 5 figure
Origin of Galactic and Extragalactic Magnetic Fields
A variety of observations suggest that magnetic fields are present in all
galaxies and galaxy clusters. These fields are characterized by a modest
strength (10^{-7}-10^{-5} G) and huge spatial scale (~Mpc). It is generally
assumed that magnetic fields in spiral galaxies arise from the combined action
of differential rotation and helical turbulence, a process known as the
alpha-omega dynamo. However fundamental questions concerning the nature of the
dynamo as well as the origin of the seed fields necessary to prime it remain
unclear. Moreover, the standard alpha-omega dynamo does not explain the
existence of magnetic fields in elliptical galaxies and clusters. The author
summarizes what is known observationally about magnetic fields in galaxies,
clusters, superclusters, and beyond. He then reviews the standard dynamo
paradigm, the challenges that have been leveled against it, and several
alternative scenarios. He concludes with a discussion of astrophysical and
early Universe candidates for seed fields.Comment: 67 pages, 17 figures, accepted for publication in Reviews of Modern
Physic
Computer aided identification of a Hevein-like antimicrobial peptide of bell pepper leaves for biotechnological use
Antimicrobial peptides from plants present mechanisms of action that are different from those of conventional defense agents. They are under-explored but have a potential as commercial antimicrobials. Bell pepper leaves (‘Magali R’) are discarded after harvesting the fruit and are sources of bioactive peptides. This work reports the isolation by peptidomics tools, and the identification and partially characterization by computational tools of an antimicrobial peptide from bell pepper leaves, and evidences the usefulness of records and the in silico analysis for the study of plant peptides aiming biotechnological uses. Aqueous extracts from leaves were enriched in peptide by salt fractionation and ultrafiltration. An antimicrobial peptide was isolated by tandem chromatographic procedures. Mass spectrometry, automated peptide sequencing and bioinformatics tools were used alternately for identification and partial characterization of the Hevein-like peptide, named HEV-CANN. The computational tools that assisted to the identification of the peptide included BlastP, PSI-Blast, ClustalOmega, PeptideCutter, and ProtParam; conventional protein databases (DB) as Mascot, Protein-DB, GenBank-DB, RefSeq, Swiss-Prot, and UniProtKB; specific for peptides DB as Amper, APD2, CAMP, LAMPs, and PhytAMP; other tools included in ExPASy for Proteomics; The Bioactive Peptide Databases, and The
Pepper Genome Database. The HEV-CANN sequence presented 40 amino acid residues, 4258.8 Da, theoretical pI-value of 8.78, and four disulfide bonds. It was stable, and it has inhibited the growth of phytopathogenic bacteria
and a fungus. HEV-CANN presented a chitin-binding domain in their sequence. There was a high identity and a positive alignment of HEV-CANN sequence in various databases, but there was not a complete identity, suggesting
that HEV-CANN may be produced by ribosomal synthesis, which is in accordance with its constitutive nature. Computational tools for proteomics and databases are not adjusted for short sequences, which hampered HEV-CANN identification. The adjustment of statistical tests in large databases for proteins is an alternative to promote the significant identification of peptides. The development of specific DB for plant antimicrobial peptides, with information about peptide sequences, functional genomic data, structural motifs and domains of molecules, functional domains, and peptide-biomolecule interactions are valuable and necessar
