15 research outputs found

    Effect of fluorination on the crystal and electronic structure of organometallic cyclopentadienyl-phenylenediamino-cobalt complexes

    Get PDF
    The fluorinated half sandwich complex [CpCoLF] (Cp = cyclopentadiene; LF = o-perfluoro-phenylenediimine; 2F) shows a T-shaped geometry with the LF ligand coplanar with the metallocycle. The molecules are dimerized in a head-to-tail fashion and arranged in a herringbone manner in the crystal packing. The crystal structure of 2F is different from that of the corresponding hydrocarbon compound (2H). Moreover, the differences due to the presence of fluorine atoms are also highlighted by the analysis of the intermolecular contacts, which show that 2F exhibits several F⋯F contacts, as well as aromatic intra-dimer π … π interactions in addition to C–H … π and C–H⋯F contacts. No relevant π … π interactions are observed in the case of 2H. Hirshfeld Surface (HS) analysis also depicted well the differences in the solid state interactions between the different crystal structures. In particular, HS has been useful in highlighting the differences observed between the crystal structure of 2H obtained from Rietveld refinement and that measured on single crystal (2HP and 2HSCH, respectively). The effect of the fluorination on the electronic structure has been investigated also by CV measurements and Density Functional Theory calculations. Both are consistent with a lowering in energy of the molecular orbitals. Data Mining Force Field calculations clearly indicate that the 2HSCH structure is more stable than the 2HP one. These findings can be explained in terms of the energy of the intermolecular interactions. The enhanced stability of the fluorine substitute can be easily explained by the large number of strong interactions involving fluorine atoms

    Disaster report of 2018 July heavy rain for geo-structures and slopes in Okayama

    Get PDF
    In July 2018, heavy rain and a large amount of damage to geo-structures and natural slopes were reported in Okayama, Japan. In particular, in the area surrounding the Oda River System, 52 people drowned due to the breach of river banks. Besides the flooding of rivers, the earth-fill dams of many water reservoirs were damaged. The stability of the large number of earth-fill dams in the Setouchi area is very important. Heavy rain is often associated with the collapse of slopes. In Okayama, many shallow slope failures or debris flows occurred over a wide area, particularly in the western part of the prefecture. Through detailed investigations, the mechanism of this geo-disaster was clarified

    Potential modulations in flatland near infrared sensitization of MoS2 phototransistors by a solvatochromic dye directly tethered to sulfur vacancies

    Get PDF
    Near-infrared sensitization of monolayer MoS2 is here achieved via the covalent attachment of a novel heteroleptic nickel bis-dithiolene complex into sulfur vacancies in the MoS2 structure. Photocurrent action spectroscopy of the sensitized films reveals a discreet contribution from the sensitizer dye centred around 1300 nm (0.95 eV), well below the bandgap of MoS2 (2.1 eV), corresponding to the excitation of the monoanionic dithiolene complex. A mechanism of conductivity enhancement is proposed based on a photo-induced flattening of the corrugated energy landscape present at sulfur vacancy defect sites within the MoS2 due to a dipole change within the dye molecule upon photoexcitation. This method of sensitization might be readily extended to other functional molecules that can impart a change to the dielectric environment at the MoS2 surface under stimulation, thereby extending the breadth of detector applications for MoS2 and other transition metal dichalcogenides

    Efficacy of the New Neuraminidase Inhibitor CS-8958 against H5N1 Influenza Viruses

    Get PDF
    Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants

    Geotechnical uncertainty, modeling, and decision making

    No full text
    202309 bcvcVersion of RecordNot mentionPublishe

    Comparative study of the methane production based on the chemical composition of Mangifera Indica and Manihot Utilissima leaves

    Full text link
    Leaves of Mangifera Indica (MI, mango leaves) and Manihot Utilissima (MU, cassava leaves) are available in tropical regions and are the most accessible vegetal wastes of Kinshasa, capital of Democratic Republic of Congo. These wastes are not suitably managed and are not rationally valorized. They are abandoned in full air, on the soil and in the rivers. They thus pollute environment. By contrast, they can be recuperated and treated in order to produce methane (energy source), organic fertilizer and clean up the environment simultaneously. The main objective of this study was to investigate methane production from MI and MU leaves by BMP tests at 30°C. The yields achieved from the anaerobic digestion of up to 61.3 g raw matter in 1 l medium were 0.001 l/g and 0.100 l CH4/g volatile solids of MI and MU leaves, respectively. The yield of MU leaves was in the range mentioned in the literature for other leaves because of a poor presence of bioactive substrates, and low C/N ratio. This methane yield corresponded to 7% of calorific power of wood. By contrast, the methane yield from MI leaves was almost nil suggesting some metabolism inhibition because of their rich composition in carbon and bioactive substrates. Whereas classical acidogenesis and acetogenesis were recorded. Therefore, methane production from the sole MI leaves seems unfavorable by comparison to MU leaves at the ambient temperature in tropical regions. Their solid and liquid residues obtained after anaerobic digestion would be efficient fertilizers. However, the methane productivity of both leaves could be improved by anaerobic co-digestion.Thèse : Etude de la biodégradation anaérobie des feuilles de Mangifera Indica (manguier) et Manihot Utilissima (manioc
    corecore