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Abstract

The calibration of discrete element method (DEM) simulations is typically accomplished in a trial-and-error manner. It
generally lacks objectivity and is filled with uncertainties. To deal with these issues, the sequential quasi-Monte Carlo
(SQMCO) filter is employed as a novel approach to calibrating the DEM models of granular materials. Within the sequential
Bayesian framework, the posterior probability density functions (PDFs) of micromechanical parameters, conditioned to the
experimentally obtained stress—strain behavior of granular soils, are approximated by independent model trajectories. In this
work, two different contact laws are employed in DEM simulations and a granular soil specimen is modeled as polydisperse
packing using various numbers of spherical grains. Knowing the evolution of physical states of the material, the proposed
probabilistic calibration method can recursively update the posterior PDFs in a five-dimensional parameter space based on the
Bayes’ rule. Both the identified parameters and posterior PDFs are analyzed to understand the effect of grain configuration
and loading conditions. Numerical predictions using parameter sets with the highest posterior probabilities agree well with
the experimental results. The advantage of the SQMC filter lies in the estimation of posterior PDFs, from which the robustness
of the selected contact laws, the uncertainties of the micromechanical parameters and their interactions are all analyzed. The
micro—macro correlations, which are byproducts of the probabilistic calibration, are extracted to provide insights into the
multiscale mechanics of dense granular materials.

Keywords Discrete element method - Calibration - Data assimilation - Sequential Monte Carlo - Triaxial compression

1 Introduction

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s10035-017-0781-y) contains supplementary
material, which is available to authorized users.

The discrete element method (DEM) captures the collective
behavior of a granular material by tracking the kinematics
of the constituent grains [9]. From just a few micromechani-
cal parameters, DEM can provide comprehensive cross-scale
insights [2,6,15,42] that are difficult to obtain in either state-
of-the-art experiments or sophisticated continuum models.
However, automated and systematic calibration of these
parameters against macroscopic experimental measurements
is still lacking, and often takes significant effort from DEM
analysts.

Assuming homogeneous macroscopic deformation, the
effective elastic properties of an ideal granular packing
can be derived analytically from contact mechanics theo-
ries, micromechanical parameters and the microstructure of
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the packing [26,31,35,46], which to some extent facilitates
the calibration of DEM models with analytical macro—
micro relations. Experimental studies were also conducted
to improve the theories based on measured micromechani-
cal [13,37] and microstructural behaviors [19,36] of grains
and granular assemblies. Nevertheless, calibrating contact
laws using microscopic measurements to reproduce the
micromechanics at contacts does not necessarily recover
the mechanical behavior at the macro-scale. Furthermore, in
industrial applications, physically based contact laws (e.g.,
the classical linear (CL) [9] and Hertz—Mindlin (HM) no-
slip contact laws [23]) are often coupled with fictitious
non-physical parameters, e.g., rolling and twisting stiff-
nesses [21,22,52], which makes the calibration a daunting
task. To tackle the issues mentioned above, an “inverse-
modeling calibration” approach [1,27] is needed to infer the
micromechanical parameters from macroscopic experimen-
tal measurements.

The conventional calibration procedure for DEM simula-
tions of granular materials employs a “one at a time” analysis
of the micromechanical parameters. Many parametric studies
were conducted to derive micro—macro interpolation charts
for various contact laws and materials using the “one at a
time” approach. For DEM simulations of rocks [7,27,50] in
which intergranular forces depend linearly on relative dis-
placements between adjoining grains, a linear correlation
between the bulk Young’s modulus and the normal contact
stiffness was identified, whereas a nonlinear correlation was
found for sandy soils [38]. Given a constant value for the nor-
mal contact stiffness, both Young’s modulus and Poisson’s
ratio were found to be linearly related to the tangential contact
stiffness [4,38], despite the fact that normal and tangential
stiffnesses can jointly affect the deformability of a granular
material. The micromechanical parameters that characterize
deformability (e.g., contact stiffnesses) and yield (e.g., inter-
granular friction angle), however, are generally believed to be
uncoupled, and thus can be calibrated separately. This has led
to many parametric studies into the macroscopic internal fric-
tion angle which was proved to have a nonlinear dependency
on the intergranular friction angle [7,45,49], irrespective of
the contact stiffnesses.

Because several micromechanical parameters can collec-
tively determine the bulk behavior of a granular material,
a parameter set identified for a DEM model with a known
grain configuration can be regarded as one of the numerous
solutions to the parameter identification problem. Among a
handful of systematic approaches to calibrating DEM mod-
els, the design of experiments (DOE) methods are efficient
in searching for possible solutions in the multi-dimensional
parameter space, with a manageable number of DEM sim-
ulations [18,24,39,54]. Hanley et al. [18] applied DOE
to calibrate DEM models of crushable agglomerates. The
interaction between the key parameters was considered by
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the orthogonal arrays designed using the Taguchi meth-
ods. Yoon [54] developed a two-step optimization process
in which a DOE method (Plackett-Burman design) was
first applied to select the parameters that have the largest
impacts on macroscopic material properties. The statistical
micro-macro correlations were then determined by run-
ning additional DEM simulations. Despite a good agreement
on the instantaneous macroscopic material properties (e.g.,
compressive strength), the transient response in the simula-
tion (e.g., stress—strain curves) did not agree well with the
experimental data. The efficiency of DOE methods largely
depends on the prior knowledge of the interaction between
parameters, which is needed to prepare DOE samples, but is
also generally limited due to the diversity of granular mate-
rials.

The aforementioned calibration approaches aim to cali-
brate micromechanical parameters against the macroscopic
material properties (e.g., Young’s modulus, peak- and critical-
state friction angles), rather than the transient behavior of
the bulk material. This is very likely to hinder the predictive
capacity of DEM models. Local rather than global solutions
to the parameter identification problem might be discovered
and adopted in the models. This leads to deviations from
the transient experimental response in the simulations. In
addition, the dependency of granular materials on stress and
fabric history cannot be accounted for in these approaches. To
capture the elastoplasticity of granular materials, the exper-
imental data measured throughout the entire loading history
needs to be fully considered within the parameter identifica-
tion procedure [41].

The sequential data assimilation techniques [12,34] can be
applied to solve the “inverse-modeling calibration” problems
and to overcome the above-mentioned difficulties. For the
current inverse problem, the sequential quasi-Monte Carlo
(SQMC) filter! and sequential importance sampling (SIS)
are implemented, which can jointly account for the effects
of loading history on the elastoplastic behavior of granular
materials [43]. The SQMC filter applies the recursive for-
mula of sequential Bayesian estimation. Experimental data
obtained step by step during a loading process are assimilated
into DEM models to approximate the evolution of posterior
PDFs in the corresponding parameter space. This “inverse-
modeling calibration” approach is expedient, because the
synergy of the SQMC and SIS algorithms is well-justified
for nonlinear and non-Gaussian geomechanical problems,
as demonstrated in the applications of these methods to
inverse finite element analyses [33,43]. A few innovative

! The sequential Monte Carlo approximates posterior probability distri-
bution functions (PDFs) by discretizing the state space with independent
samples, and thus is also called “particle” filter. To avoid confusion
between particles referred to as Monte Carlo samples, physical grains or
discrete elements in simulations, the term “particle” filter is not adopted
in the context of Bayesian parameter estimation for DEM models.
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calibration methods for DEM or molecular dynamics sim-
ulations were recently proposed using Bayesian approaches
[3,40,53]. Hadjidoukas et al. [16,17] employed the Transi-
tional Markov Chain Monte Carlo algorithm to find optimal
parameter values in DEM simulations of silo discharge. By
assuming uniform prior distributions for all micromechani-
cal parameters, the parameter uncertainties were quantified
and a Bayesian model selection framework was provided for
two-dimensional (2D) monodisperse granular systems. The
SQMC filter implemented in this study requires no assump-
tions about the prior distributions of the model states. The
Bayesian calibration is conducted for three-dimensional (3D)
DEM simulations of polydisperse granular materials under
triaxial compression, which in turn reveals the posterior PDFs
that help in assessing the robustness of the contact laws.
To the authors’ knowledge, this work is the first attempt to
develop a sequential data assimilation procedure for calibrat-
ing DEM models over the transient behavior of bulk granular
materials. For the current implementation, both SQMC and
SIS algorithms are implemented in the open-source DEM
package YADE [44].

The remainder of this paper is organized as follows. Sec-
tion 2 outlines the contact laws and grain configurations
which are the key ingredients of the DEM models. The fun-
damentals of SQMC and SIS, and their implementation, are
detailed in Sect. 3, followed by the descriptions of the pos-
terior PDFs resulting from the transient experimental data
in Sects. 4 and 5. Section 6 discusses the robustness of the
proposed method. Conclusions are drawn in Sect. 7.

2 DEM simulations of granular materials

The open-source DEM package YADE [44] is applied to
perform 3D DEM simulations of dense granular materials
under drained triaxial compression. The stochastic responses
obtained from the simulations using quasi-randomly sam-
pled parameter values, i.e., samples, are processed through
the SQMC and SIS algorithms to approximate the posterior
PDFs, conditioned to the experimental data. YADE models
granular materials as packings of solid grains with simplified
geometries and vanishingly small intergranular overlaps. It
tracks the trajectory of each grain within the explicit time
integration scheme, based upon the net force resulting from
the intergranular forces. In the present work, the robustness of
the SQMC filter for calibrating DEM models is examined by
modeling a representative volume of cohesionless granular
soil using dense packings of polydisperse spherical grains.
The simple HM and CL contact laws are selected to describe
the contact force—displacement relationships in the normal
and tangential directions. To account for the effects of grain
shape and roughness, rolling and twisting moment transfer is
allowed at the contact points of adjoining spheres. Both inter-

granular tangential forces and rolling/twisting moments are
assumed to be bounded by Coulomb type yield criteria. Each
DEM simulation of the representative volume of the granu-
lar soil under drained triaxial compression is performed in
a strain-controlled quasistatic manner. For each calculation
cycle of an incremental loading, a global damping ratio of 0.2
is adopted to mimic the presence of a background fluid and
ensure numerical stability. In the subsequent cycles, which
are run to dissipate the total kinetic energy before the next
incremental loading, the global damping ratio is raised to 0.9
until the quasistatic macroscopic variables (see Sect. 3.1) can
be extracted.

2.1 Micromechanical contact laws and parameters

Two different contact laws are employed in the present
work, i.e., the classical linear force—displacement model and
the nonlinear model which combines the formulations for
Hertzian normal and Mindlin’s simplified tangential stiff-
nesses. For two adjoining spheres with a negligible normal
overlap u, and a tangential relative displacement duy at the
contact point, the intergranular normal force F,, and tangen-
tial force increment dF can be related to the normal stiffness
k, and tangential stiffness k; respectively. The general forms
of these force—displacement models are given by

F, = k,u, (1
dFy = k; dug (2)

where &, and k; are defined differently according to the con-
tact laws. In YADE, the linear normal and tangential spring
stiffnesses are computed from the harmonic averages of the
contact-level Young’s moduli E., Poisson’s ratios v, and the
radii associated with the two spherical grains. Adopting iden-
tical values for E. and v, of both grains, the expressions for
k, and kg are simplified as:

ky = 2E.r* 3)
kg = 2E.v.r* %)

where the equivalent radius r* is defined as 1/(1/r1 + 1/r2),
and r; and r; denote the radius of the two grains in contact.
By adopting identical E. and v, for the contacting spherical
grains the formulations of k,, and k; given by the HM contact
law read:

ko = —2_ ] )
S —— u
n 31— ch) r n
2E,
s T ©)

T 0t 002 =)

where the values of k;,, and k; depend nonlinearly on |u,]||,
which is updated in every calculation cycle of DEM sim-
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Table 1 Expressions for intergranular normal, tangential and rolling
stiffnesses and corresponding plastic limit conditions

Contact  Contact stiffnesses Plastic limit condition
law
CL ky =2E.r*
ky = 2Ecver* IFsll = tan ¢y [|Fy |l
ki = Bmriraks Ml = 7 |y | min(ry, r2)
HM k= 5t Tl
ke = (ks /P IFo]l = tan ¢ [F |
ki = Bm IMIl = 0w IFnll(r1 +12)/2

ulations. The respective expressions for the normal and
tangential stiffnesses according to the two contact laws
implemented in YADE are summarized in Table 1.

Because the grain shapes are simplified as rigid spheres,
rolling resistance between adjoining grains is needed to
mimic the effects of grain shape and surface roughness. One
additional phenomenological parameter, namely the rolling
stiffness k,,, is thus introduced, which linearly relates the
rolling/twisting moment in the contact area with the rela-
tive rotation/torsion between two contacting grains. Note that
rolling and twisting are unified in one moment—rotation equa-
tion for simplicity. In YADE [32,44], the rolling stiffness
defined in the implementations of the HM and CL force—
displacement models varies slightly (see Table 1). A constant
rolling stiffness k,, = p,, is implemented in the former,
whereas the latter uses 3, as a dimensionless coefficient to
calculate k,,, from the radii and contact tangential stiffness of
the two contacting grains.

Friction criteria are imposed on intergranular tangential
forces and rolling/twisting moments to account for sliding
between contacting grains and, on the macro-sale, plastic
deformation in the granular soil. Both failure criteria adopt
the Mohr—Coulomb type formulation. The maximum tan-
gential force ||F;|| is calculated as the intergranular friction
coefficient tan(¢, ) multiplied by the magnitude of the nor-
mal force ||F,||, whereas the rolling/twisting moment is
constrained by the rolling friction coefficient ,,, |F,| and
the characteristic length related to the radii (see Table 1).
Despite being phenomenological, rolling stiffness and fric-
tion are generally needed to obtain internal friction angles
close to experimentally measured values for dense gran-
ular soils, without making an extra computational effort
to capture the kinematics related to irregular grain shapes
and surface roughness. Note that although the contact laws
employed in the current work are implemented differently,
the micromechanical parameters to be identified in the
Bayesian calibration are the same, i.e., the Young’s modulus
E. and Poisson’s ratio v, of contacting grains, the rolling
stiffness and friction coefficient g8, and n,,, and the inter-
granular friction angle ¢,,.

@ Springer

2.2 Scale and resolution of DEM granular packings

In the present work, the DEM granular packings are prepared
to model a representative volume of Toyoura sand, such that
the packings can be repetitively stacked up to construct a
large-scale simulation domain. The micromechanical force
and contact networks calculated with DEM are typically
averaged over the repeated representative volumes to extract
macroscopic variables such as stress and fabric tensors [5].
Alternatively, these packings can be embedded at the Gauss
integration points of a FEM mesh to derive the local mate-
rial responses in a hierarchical FEM x DEM multiscale model
[15,30]. It is well known that the microstructure of a granular
material (e.g., coordination number and anisotropy [28,29])
plays a key role in the macroscopic constitutive behavior.
Therefore, the number of constituent spherical grains N,
namely, the resolution of the DEM packings needs to be suf-
ficiently large in order to ensure a realistic representation
of the microstructure. On the other hand, in those cases in
which the DEM packings are designated to return the mate-
rial responses at a local scale, N, should not be excessively
large so as to suppress localized cracks and failures in the
microstructure.

In the light of the above considerations, grain configu-
rations consisting of various numbers of spherical grains
are created and investigated. For each grain configuration,
a cloud of spherical grains with the same density p, =
2650 kg/m? is first generated in a cuboidal periodic cell. The
diameters of the spherical grains are sampled from a scaled
grain size distribution of Toyoura sand. Initial isotropic com-
pression is then applied to consolidate each cloud into a
dense cuboidal packing (50 mm x 50 mm x 100 mm)
with an initial void ratio of ey = 0.68, the same as those
in the experiments [47]. During the consolidation stage, a
very high Young’s modulus is adopted to create grain con-
figurations with negligible overlaps between grains. While
maintaining a low confining pressure (p = 100 Pa) by
using a servo-controlled periodic boundary condition, the
initial intergranular friction is tuned down slightly whenever
quasistatic states are reached. After a couple of cycles of
reducing the friction and minimizing unbalanced forces, var-
ious “stress-free” dense packings, which are “identical” in
the sense of the initial void ratio, are generated. Among all
the randomly generated dense packings three (N, = 1000,
2000 and 5000) are selected as illustrated in Fig. 1, because
of their relatively smooth and spherical contact orientation
diagrams after the initial isotropic compaction. Note that
Ny = 1000 is the minimum number of spherical grains
needed to create “stress-free” dense packings, whose con-
tact orientation distributions are uniform and statistically
stable.
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Fig. 1 DEM granular packings consisting of a 1000, b 2000 and ¢ 5000 spherical grains, and the associated contact orientation diagrams and

coordination numbers

3 Data assimilation for granular materials
using the SQMC filter

3.1 State space model and state estimation

The SQMC filter is a sequential data assimilation method
that is known to be particularly preferable for merging sparse
experimental data into prognostic models of nonlinear and
non-Gaussian systems. It takes advantage of the recursive for-
mula of the sequential Bayesian framework to approximate
the posterior probability distributions using an ensemble of
sampling points in the multi-dimensional parameter space
R”. When applied to estimate the expectations of the state
variables together with the importance sampling, the recur-
sive Bayesian filter is capable of tracking the evolution of the
probability on each sample, conditioned to the sequentially
measured experimental data. In fact, the process of updating
the posterior PDFs based on the existing and newly obtained
knowledge from experimental investigations is highly suited
for calibrating the DEM models of granular materials which
are sensible to stress history. Given the Toyoura sand speci-
men (eg = 0.68) and its equivalent DEM granular packings,
the physical measurements on the specimen and the numer-
ical predictions resulting from the DEM models can be
described in a nonlinear and non-Gaussian state space model
[25]:

x¢ = F(x¢—1) + v @)
vt = H(x) + o (8)

where the state vector X¢ consists of three independent vari-
ables which characterize the triaxial responses of the DEM
packing, namely, stress ratio o, /o, radial strain &, and volu-
metric strain €, at a discrete data assimilation step ¢, whereas
the observation vector yy is directly measured in the drained
triaxial compression experiments [47]; v, and @, are the sys-
tem error and the observation error respectively, whose PDFs

follow normal distributions with zero means. [F' denotes the
operator that represents the nonlinear dynamic model (i.e.,
the DEM model). The current state of F depends on all
preceding states of the dynamic model, which evolves with
physical constraints like externally applied loads. The non-
linear observation operator H is reduced to an identity matrix
of size three in the current problem.

3.2 SQMC filter

The SQMC filter approximates posterior PDFs via a set
of samples (referred to as an ensemble) and the associated
weights [25,43]. From the ensemble {X£1—)1|t—1’ X£2—)1|t—1’ R

N . .
xi_‘l’l)t_l} and the corresponding weights {wt(l_)l, wt(i)l, e

N . .
wt(f‘;’ )}, the filtered distribution p(X¢—1|y1:t—1) at time ¢t — 1

is estimated as:

N
1 & ;
P (Xt—1ly1:t—1) = _N § w,(gla (Xt—l - X:l_)1|t_1) 9
p

i=1

where N, is the number of samples, § is the Dirac delta func-
tion, and the superscript (i) indicates the ith sample Xil—)llt—l

and its associated weight w'" . It should be noted that all the
weights are no less than zero and the summation of them must
be one, i.e., 0 < wt(?l < 1 and Zf\i’l wt(?] = 1. With the
help of the ensemble sampled using the quasi-Monte Carlo
method, the recursive formulas for approximating the one-
step-ahead forecast distribution p(X¢|y1:¢t—1) and the filtered
distribution p(x¢|y1:t) are simplified as follows:

o
P(Xtx¢—1) p(Xe—11y1:t—1) dX¢_1

p(X¢ly1:t—1) = f

—00

N, (10)

~ (@) (@)
~ Z w19 (Xt - tht—l)

i=1
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p(yelxt) p(Xtly1:¢—1)

P(Xtly1:t) =
p(yly1:t-1)
~ (@) (i) (@)
= Z l 11—15 (Xt - Xtit 1)
AL, o)
= Z w,l ) ( xtlIt 1)
i=1
(1
with
(i)
~ ) p (Yt|Xt|t_1>
) = (12)

5 p (vl ) w?y

Given that the observation system is assumed to be linear,
the likelihood p(yt|x¢jt—1) of the ith sample reads:

; 1
p () =
(2m)m/2|My|

o ) ()

2

X exp

(13)

where m is the dimension of the state vector, My is a pre-
determined covariance matrix of the observation error, and
H; is the observatlon operator H in matrix form. From the
previous weight u)[ | and the current regulated weight w(l)
on each sample (see Eq. 12), the new weight w; ® at the data
assimilation step ¢ can be updated as:

w @ = iy, (14)
3.3 Sampling method and SQMC filtering procedure

The SIS algorithm keeps track of the evolution of the initially
generated samples, rather than repeatedly performing resam-
pling from the updated posterior distribution. It allows for
calibration against the transient behavior of the modeled sys-
tem, e.g., the stress—strain response of granular soils, through
the filtering and weight updating steps. The initial sampling
and the SQMC filtering procedure for solving the current
parameter identification problem are summarized in the four
steps below.

1. Initialization:
Generate an ensemble of realizations {xo(l), X()(z), e,
xo»)} by initializing dynamic models (DEM sim-
ulations) using parameter sets sampled from a low-
discrepancy sequence in R". n is the number of the
parameters to be identified and is equal to five in the
present work.

@ Springer

2. Prediction:
Update the state of each realization x¢) from the cor-
responding DEM simulation run at the data assimilation
step ¢.

3. Filtering:
Given the experimental data y, calculate the weights on
the ensemble {w(l) t(z) e, ( r )} that represents the
“fitness” of the dynamic models to the physical system
using Egs. (12) and (13).

4. Weight updating:
Approximate filtered distribution p(X¢|y1:¢) with the
updated ensemble and the associated weights. Return
to Step 2 with p(x¢|y1:t), xLD, x@, ..., %N} and
{w(l) w,(2), e, w,(N”)} for prediction and filtering at the
next data assimilation step.

The SQMC filter makes no assumptions on how the
prior probabilities of the dynamic model distribute over the
prior samples. Therefore, a sufficiently large ensemble size
is required for the posterior PDFs to stabilize within the
available data assimilation steps. For the current numerical
models, which have five micromechanical parameters, a total
number of 2000 samples (N, = 2000) can efficiently esti-
mate the posterior PDFs at acceptable computational cost.
The fact that the DEM simulations are run in parallel on
a multi-core system with the open-source DEM package
YADE also helps in reducing the total computational time
needed in the prediction step.

4 Numerical and experimental triaxial
compression tests: the dynamic model and
the physical system

The calibrations of the DEM simulations of Toyoura sand
under drained triaxial compression are adopted as an exam-
ple, to demonstrate the capability of the SQMC and SIS
algorithms in evaluating the parameter uncertainties of the
DEM models. Based upon the wide ranges assumed for the
micromechanical parameters in Table 2, a five-dimensional
Halton sequence [10] is generated and employed as the
ensemble which contains 2000 samples (i.e., combinations of
parameters E¢, V¢, B, m, and ¢,,). The values held within
each sample are correspondingly assigned to the microme-
chanical parameters of the CL and HM contact laws.

The HM and CL contact laws are applied respectively to
the three “stress-free” initial packings (Ng = 1000, 2000 and
5000), which are created as the computational representative
volumes of the Toyoura sand specimen (eg = 0.68). Drained
triaxial compression on the Toyoura sand specimen under
various confining pressures are simulated in a two-phase
loading program: the packings are first isotropically com-
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Table2 Means and standard deviations assumed for the micromechan-
ical parameters

10g E. (Pa) Ve Bm (Nm/rad) Mm ¢u ©)
Mean 9 0.25 0.5 0.5 30
SD 2 0.25 0.5 0.5 30

Table 3 Number of grains and confining pressures applied in the
numerical simulations

N, o, (MPa) 0.2 0.5, 1.0, and 2.0
CL HM CL HM

1000 v v v v
2000 and 5000 v v - -

pressed to prescribed confining pressures o, (see Table 3),
and then sheared along triaxial loading paths in a quasistatic
manner. The DEM simulations are strain-controlled, so that
the state variables can be extracted at the exact macroscopic
strain levels where the experimental measurements were
made. The probabilistic calibrations of six DEM models
(combinations of two contact laws and three grain config-
urations) are conducted under various confining pressures as
listed in Table 3. Each probabilistic calibration makes use of
2000 deterministic DEM simulations run with the same set
of samples (N, = 2000). As the simulations undergo each
incremental load, the extracted state variables and the corre-
sponding experimental measurements are processed through
the one-step-ahead forecasting and filtering steps (Eqs. 10—
11). As a result, the evolution of the posterior PDFs can be
captured over the loading history.

5 Posterior probabilities of parameters in
two DEM models

To understand the robustness of the proposed calibration
approach, the effect of grain configurations and loading
conditions on the posterior probability distributions are
investigated (see Table 3). The evolutions of the posterior
probabilities of the micromechanical parameters are first pre-
sented for both contact laws shown in Fig. 3. The goal is to
present an global picture of numerous solutions to the current
inverse problem and their evolutions over the loading history.
The dependencies of the posterior PDFs on the selected grain
configurations and loading conditions are then analyzed in
Sects. 5.1 and 5.2, by fixing either grain configurations or
loading conditions in the DEM simulations. Kernel density
estimators are applied to postprocess the discrete samples
and their associated importance weights into smooth poste-
rior PDFs. Note that the goal is not to reveal the probability
density at a specific point in the parameter space, but to inter-

pret the robustness of the contact laws from the posterior
distributions.

5.1 Effect of grain configurations on the posterior
probability distributions

5.1.1 Identified micromechanical parameters

To keep track on how the expectations of the state variables
converge to their true values, the quasi-randomly generated
parameters are weighted by the updated posterior probabil-
ities at each data assimilation step (axial strain increment
de, = 0.1%). The evolutions of the weighted averages,
referred as identified parameters, are shown in Fig. 2. The
posterior probabilities obtained from the three DEM pack-
ings (Ng =1000, 2000 and 5000) and the two contact laws
are compared in Figs. 2 and 4, to investigate the effect of the
DEM models on the calibration process. The DEM packings
undergo the exact triaxial loading history as the experimental
specimen at a confining pressure of o, = 0.2 MPa.

After recursively updating the weights through sufficient
steps of data assimilation, the SQMC filter eventually leads to
less pronounced variation of the posterior probability distri-
butions. Figure 2 shows that the identified parameters reach
plateaus after approximately 60 data assimilation steps. The
combinations of parameters that are estimated to give the
highest posterior probabilities are considered to be the cal-
ibration results. Although the evolutions of the identified
parameters become stationary eventually for both contact
laws and all three DEM packings, the convergence rate
appears to be lower with larger fluctuations for the DEM
models governed by the HM contact law (dashed curves).
Note that the true values, which the identified parameters con-
verge to, are very close between the DEM models that only
differ in their grain configurations. The agreement between
the identified true values obtained with various grain config-
uration is even better for the DEM models which adopt the
CL contact law. The identified ¢, and ,, for the simulations
conducted with the HM and CL laws differ slightly, whereas
the differences between the identified values for E., v, and
B of the two contact laws are more pronounced. This is
because the same Coulomb type friction is applied on both
tangential forces and rolling/twisting moments. It appears
that the true values identified for the strength parameters ¢,
and 7, are independent of the normal and tangential stiff-
nesses, although they are formulated differently in the two
contact laws.

5.1.2 Posterior PDFs of micromechanical parameters
A key advantage of the SQMC filter for parameter identi-

fication is the ability to capture the posterior PDFs in the
multi-dimensional parameter space. Because of the impor-
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Fig. 2 Evolution of identified micromechanical parameters during the probabilistic calibration of the DEM simulations (N, = 1000, 2000 and

5000) governed by CL and HM contact laws

tance sampling, it is possible to capture the evolution of
the posterior distributions that are updated based on the
experimental data from the first until the present data assim-
ilation steps, as expressed in Eq. (10). For granular materials
experiencing transient loads, the macroscopic elastoplastic
responses are rooted in the irreversible rearrangement in the
microstructure. Therefore, the calibration must be able to
take the loading history into account, which is only possible
within a sequential Bayesian framework using the SIS. The
subplots CL(a)—(e) and HM(a)—(e) in Fig. 3 show a typical
evolution of the weights, calculated using Eqs. 12—14, asso-
ciated with the five micromechanical parameters conditioned
to the experimental triaxial behavior of Toyoura sand. The
subplots CL(a), (¢) and HM(a), (e) of Fig. 3 clearly show that
the posterior probability distributions projected on the E. and
¢, axes gradually shift from uniform to Gaussian-like for
both contact laws, as more experimental data becomes avail-
able. It is surprising to see that the true values for E. and ¢,
already become identifiable within the first 20 data assimi-
lation steps (¢, = 2%). The weights associated with v, in
Fig. 3 CL(b) and HM(b) grow into bimodal and multimodal
distributions at approximately the 40th data assimilation step
(¢4 = 4%), which corresponds to the strain where o,/0,
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reaches the peak in the experiment. After 60 data assimila-
tion steps, there are no significant changes in the posterior
distributions over E., v. and ¢,. Further data assimilation
only causes a few samples to gain more weights. This follows
the concept of Bayesian updating, but leads to the degener-
acy problem, i.e., very few samples having relatively large
weights. Refining the range of v, or using a larger ensem-
ble size would help better capture the bimodal/multimodal
distribution. Although suitable values for §,, and 7, are
identified, the posterior probability distributions appear to
be more scattered and do not evolve with consistent shapes.
The fact that these distributions can hardly be described by a
Gaussian or mixtures of Gaussians might be due to the non-
physical nature of the rolling/twisting parameters. Note that
the weights in Fig. 3 HM(a)—(e) distribute around the true
values with bigger standard deviations compared with those
shown in Fig. 3 CL(a)—(e), although the uncertainty assumed
for the observation error is identical in all cases. This sug-
gests that, given the current ensemble of prior samples, the
HM contact law has a higher model robustness in predicting
the triaxial behavior of granular soils than the CL contact law.

To better illustrate the dependency of the posterior prob-
ability distributions on grain configurations and loading
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Fig. 3 Posterior probability distribution of each micromechanical parameter in the DEM simulations (N, = 1000, o. = 0.2 MPa), governed by

CL and HM contact laws, at different data assimilation steps

conditions, the discrete weights as in Fig. 3 are further pro-
cessed through kernel density estimation to obtain the smooth
density functions shown in Figs. 4 and 6. The posterior PDFs
obtained using different DEM packings (N, = 1000, 2000
and 5000) at the 60th data assimilation step (¢, = 6%)
are plotted together in Fig. 4. Note that after the 60th step,
there are no further changes in the evolutions of the identi-
fied parameters, except for g, and n,,. As can be expected
from Fig. 2, the posterior PDFs for the different DEM mod-

els governed by the same contact law generally collapse, as
shown in Fig. 4. The density functions are almost identical
for the DEM models using the CL contact law, regardless
of the numbers of grains N in the packings, whereas those
obtained using the HM contact law differ slightly depending
on Ng. One of the reasons might be that the rolling stiffness
implemented for the HM contact law is not scaled by grain
radii which increases as the number of grains in the pack-
ing decreases. The implementation of the rolling/twisting
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Fig.4 Posterior probability density over each micromechanical parameter of the DEM simulations (N, = 1000, 2000 and 5000 and o = 0.2 MPa)

governed by CL and HM contact laws, at the 60th data assimilation step

scheme for the CL contact law, on the other hand, calcu-
lates the rolling stiffness from the radii of the contacting
grains, the tangential contact stiffness and dimensionless fac-
tor B,,. Nevertheless, the agreement between the posterior
PDFs using the same contact law is generally good, and in
line with most large-scale DEM simulations that use scaled
grain size distributions to represent granular soils [6,14,20].
The agreement of the posterior distributions in Fig. 4 verifies
a scaling rule [48]: the macroscopic behavior of a granular
material can be recovered from a “prototype” DEM packing
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with a minimal number of grains, as long as the same bulk
properties, such as initial void ratios and stress states, are
ensured for the DEM packing. Based on the scaling rule, fast
probabilistic calibration of micromechanical parameters can
be first conducted with the “prototype” DEM packing. Dupli-
cates of the “prototype” packing can then be either employed
as representative volume elements for FEM x DEM multi-
scale modeling, or stacked up to assemble a large-scale DEM
simulation domain.
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Fig.5 Evolution of identified micromechanical parameters during the probabilistic calibration of the DEM simulations (N, = 1000) governed by
CL and HM contact laws, under triaxial compression at various confining pressures

5.2 Effect of loading conditions on the posterior
probability distributions

5.2.1 Identified micromechanical parameters

It is known that the elastoplastic behavior of granular soils
strongly depends on the loading history experienced. With
DEM, the plastic deformation of granular soils can be easily
captured via irreversible change of the microstructure sub-
jected to external loads. The questions are how the loading

history can be taken into account during the calibration pro-
cess such that the correct elastoplastic behavior is reproduced
at the macro-scale, and how the identified micromechani-
cal parameters of both contact laws would be affected by a
range of loading conditions. Figure 5 shows the evolution
of the micromechanical parameters identified for the DEM
simulations of Toyoura sand (N, = 1000), under triaxial com-
pression at various confining pressures o, = 0.2,0.5, 1.0
and 2.0 MPa. From both Fig. 5 CL(a) and HM(a), it can
be observed that the identified values of E. stabilize after
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Fig. 6 Posterior probability density over each micromechanical parameter of the DEM simulations (N, = 1000, o, = 0.2, 0.5, 1.0 and 2.0 MPa)

governed by CL and HM contact laws, at the 60th data assimilation step

approximately 30 data assimilation steps, which is in line
with the identified parameters in Fig. 2 CL(a) and HM(a).
At different o, the true values identified for the DEM simu-
lations using the HM contact law stay relatively closer than
those using the CL contact law, as can be seen in Fig. 6.
Analogous to Fig. 2 CL(b)—(d) and HM(b)—(d), the evolu-
tions of the identified values for v, 8, and n,, appear to
fluctuate between two or multiple plateaus during the calibra-
tion. The fluctuations indicate frequent exchange of weights
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between certain samples that possess comparable posterior
probabilities at various data assimilation steps. The evolu-
tions of the identified ¢, in Fig. 5 CL(e) and HM(e) show a
clear dependency on the applied confining pressures, i.e., the
curves that represent the evolutions of identified ¢,, obtained
with a smaller o, lying above those obtained with a larger o.
This dependency can be attributed to the crushability of the
granular soil that develops with increasing confining pres-
sure. Despite the fluctuations and the dependency on the
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Fig.7 Comparison of triaxial responses obtained in the experiments and DEM simulations using the parameters identified different numbers of

spherical grains under the same confining pressure

loading conditions, the evolutions of all identified parameters
becomes stationary after sufficient data assimilation steps.

5.2.2 Posterior PDFs of micromechanical parameters

In a similar fashion to the posterior probability distributions
described in Sect. 5.1, the discrete approximation of poste-
rior probabilities are smoothed using Gaussian kernels. A
closer look at the posterior PDFs in Fig. 6 CL(a) and HM(a)
shows that the PDF projected over E. of the CL contact
law shifts slightly to the right as o, increases, whereas those
of the HM contact law collapse between 10° and 10'° Pa
regardless of the confining pressures. Similarly to Fig. 4
HM(b)—(d), several peaks can be observed in Fig. 6 CL(b)—
(d) and HM(b)—(d). For the DEM simulations using the HM
contact law, the probable values for v., 8, and 7, which
correspond to the peak densities obtained at different o, are
very similar. The posterior distributions obtained using the
CL contact law at different o., however, are not in good
agreement, especially in Fig. 6 CL(b) and (d). As can be
expected from Fig. 5 CL(e) and HM(e), both posterior PDFs
in Fig. 6 CL(e) and HM(e) shift towards smaller values with
the increase of the confining pressure. Nevertheless, the shift
of the posterior PDFs towards smaller ¢, is less noticeable
in Fig. 6 HM(e). In fact, there are still considerably large
overlaps between the distributions obtained at various con-
fining pressures, where the probability densities are relatively
high. The above findings suggest that for a given grain con-
figuration, the nonlinear HM contact law is more robust at
predicting the triaxial behavior of granular soils under vari-
ous confining pressures. This means that applying a certain
combination of parameters for various confining pressures,
in the case of the HM law, will not lead to a large discrepancy
between the numerical predictions and experimental data, as
long as the parameters are selected around the peaks of the
joint distributions. These findings are reasonable, because
the HM contact law is analytically derived from the elastic-
ity of two contacting spheres which provides the nonlinear

dependency of contact stiffnesses on pressure. Using a well
calibrated combination of parameters, the HM contact law
should be able to more accurately model a granular material
subjected to a wide range of external loads, until the effect
of grain crushing is no longer negligible.

6 Discussion
6.1 Numerical predictions versus experimental data

The DEM simulation results reproduced with the most prob-
able parameters identified by the SQMC and SIS algorithms
are plotted with the experimental data in Figs. 7 and 8. Good
agreement between the numerical predictions and experi-
mental data is achieved as shown in Figs. 7 and 8, regardless
of the contact laws and the numbers of spherical grains in
the DEM simulations. The combinations of parameter val-
ues identified to be the most probable in reproducing the
experimental data at their respective confining pressures are
listed in Tables 4 and 5. As can be seen in the tables, the
intergranular friction angle which gives the best agreement
in Fig. 8 decreases with an increase of the confining pressure
for both contact laws. This dependency can be attributed to
the crushing behavior of Toyoura sand in the experiments,
which neither of the two contact laws can mimic in DEM
simulations using smooth spherical grains. It should be noted
that although the SQMC filter can give the most optimal
combinations of parameters as listed in Tables 4 and 3, it is
fundamentally different from any optimization techniques,
because the probabilistic calibration is conducted by eval-
uating the parameter and model uncertainties through the
posterior PDFs within the Bayesian framework. Each opti-
mal solution presented here is simply one of many possible
solutions to the parameter identification problem. The fol-
lowing section aims to interpret the interactions between
micromechanical parameters from the posterior PDFs in
the five-dimensional parameter space. The statistical micro—
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Fig.8 Comparison of triaxial responses obtained in the experiments and DEM simulations using the parameters identified for different confining

pressures and the same number of spherical grains

Table 4 Most probable sets of micromechanical parameters identified
for the CL contact law

Table 5 Most probable sets of micromechanical parameters identified
for the HM contact law

o. (MPa) E. (GPa) Ve Bm (Nm/rad) Mm ¢u ) o. (MPa) E. (GPa) Ve Bm (Nm/rad) Mm ¢u )
0.2 0.545 0.080 0.564 0.194  30.203 0.2 4.123 0.064  0.148 0.202  30.387
0.5 0.545 0.080 0.564 0.194  30.203 0.5 5.882 0.304 0.344 0.567  24.027
1.0 1.252 0.439  0.076 0.726  22.043 1.0 8.324 0.049  0.363 0.480  24.951
2.0 1.046 0.160  0.589 0.331 18.076 2.0 6.793 0.482  0.998 0.171 20.06

macro correlations are also established following the same
concept mentioned above.

6.2 Correlations between micro- and
macro-mechanical parameters

The posterior PDFs obtained from the DEM simulations (N,
= 1000 and o, = 0.2 MPa) using both contact laws at three
selected data assimilation steps are illustrated in Fig. 9a—c.
At these characteristic steps, the granular material shows dis-
tinctive macroscopic physical states, namely, purely elastic,
maximum volumetric-contraction and peak stress ratio states,
as shown in Fig. 7. The objective is to analyze the evolution
of the posterior PDFs in the respective parameter spaces, so
that better prior knowledge of the interactions between the
micromechanical parameters can be obtained. The color bars
are omitted in Fig. 9 because only the relative values matter in
solving the parameter identification problem. The plots in the
diagonal of Fig. 9 present the marginals of the posterior PDFs
of the five micromechanical parameters, i.e., E¢, V¢, B, m»
and ¢,,, respectively. The projections of the continuous pos-
terior PDFs obtained using the HM and CL contact laws are
shown in the below- and above-diagonal panels, and colored
by their respective densities. The blue and red color schemes
are adopted for the distributions obtained using the CL and
HM contact laws.

Figure 9a shows that at a very early stage the posterior
distributions and the peaks associated with E. and ¢, of
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both DEM models are already identifiable. While these two
parameters seem to be correlated, the other parameters v., B,
and 7, show less pronounced or insignificant correlations
with E. and ¢,,, irrespective of the contact laws. The 2D pro-
jections of the posterior PDFs associated with E. are almost
aligned into straight bands perpendicular to the E. axis. The
physical system, which evolves from the initial elastic to
maximum volumetric-contraction states, causes the peaks
over ¢, to shift towards larger values for both contact laws, as
shown in Fig. 9b. However, the true values of E. are almost
the same as those in the initial calibration stage, as shown in
Fig. 9a. In Fig. 9a, the distributions in both 2D E.—¢,, pro-
jections become increasingly parallel to the E. axis, forming
into long tails as E, increases. These long tails gradually dis-
appeatr, as the physical system evolves from the purely elastic
to maximum volumetric-contraction states, as can be seen for
both contact laws in Fig. 9b. This indicates that if, by trial
and error, the identified E. happens to be located at these
local optima, which could happen because E. is commonly
calibrated against the bulk Young’s modulus, the resulting
numerical simulations will not yield good agreement with
the experimental results, even though ¢, could be well deter-
mined by the bulk shear strength. While the physical system
is approaching the peak stress ratio state, the distributions
keep shrinking towards the true values, with no evident shift
in the parameter spaces. It should be noted that the calibra-
tions at least for £ and ¢,, of both contact laws have already
finished at the maximum volumetric-contraction state. The
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exchange of importance weights between certain samples
can be observed by comparing the posterior PDFs associ-
ated with 8, and n,, in the marginals and 2D projections of
Fig. 9b, c.

Therefore, it can be concluded that the micromechanical
parameters E¢, v, and ¢, have the predominant effect on the
calibration of the DEM models. Once these three parameters
are calibrated with high accuracy (posterior probability), the
true values for the rolling parameters f,, and n,, can be iden-
tified by tuning the evolution of post-peak stress ratio over
axial or deviatoric strain. It is worth noting that this technique
is often adopted in the literature, because rolling stiffness and
rolling friction can significantly affect the bulk shear strength,
but have a negligible influence on the initial elastic behavior
and dilatancy of a dense granular material [38].

A very important byproduct of the proposed calibration
procedure is the large number of simulations that are needed
to capture the complete picture of the posterior PDFs over
the explored parameter space. From the huge amount of sim-
ulation data, although many of them largely deviate from
the experimental results, it is possible to extract meaningful
universal trends between the micro- and macro-mechanical
parameters. From the numerically predicted stress—strain
curves, the bulk Young’s modulus and Poisson’s ratio, Ep,k
and vp,; are determined as the secant values at the devi-
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atoric strain ¢4 = 1%. The internal friction angle @p, i is
simply calculated from the peak stress ratio. Figure 10a, b
respectively show the samples in the parameter subspaces
constructed with the micromechanical parameters of the CL
and HM contact laws and the corresponding bulk properties
calculated directly from the numerical stress—strain curves.
The samples in Fig. 10 are colored by the probability density
functions estimated with Gaussian kernels.

From the statistics in Fig. 10a, b clear micro—macro corre-
lations between the micromechanical parameters and the bulk
properties of granular materials can be identified. The corre-
lations between Ep,;,;x and E. are almost linear and piecewise
linear for the CL and HM contact laws respectively in log—
log scales. Although the correlation between Ejp,; and ¢,
is not as significant as that between Ej,;; and E., a clear
dependency of the bulk Young’s modulus on the intergranu-
lar friction can be seen from the samples with high probability
densities. As shown in Fig. 10a, the bulk Poisson’s ratio vy,
predicted by the CL contact law might have unrealistic values
above the physical limit. The statistics show that v,;x is more
likely to be unrealistic with the increase of E. and ¢,,. All the
bulk Poisson’s ratios predicted by the HM contact law, on the
other hand, fall within the physical range between 0 and 0.5.
From the subplots that characterize the dependency of vp,x
on the micromechanical parameters in Fig. 10a, b, it can be
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observed that vy, is nonlinearly correlated to both E. and
¢, in the case of the HM contact law, whereas this trend is
barely noticeable for the CL contact law. The @py—¢,, cor-
relations appear to be nonlinear and are very similar for both
the CL and HM contact laws, except that the samples are
more scattered in the former than in the latter. In both ¢p,r—
¢, subplots, there exist upper bounds on the possible values
of gy depending on the selection of ¢,,. In the case of the
HM contact law, a lower bound is also present which further
narrows down the choices for the initial guess of ¢,. Nev-
ertheless, the samples become more scattered and the two
bounds diverge increasingly as ¢, increases, meaning that
the calibration against large @p,x is generally more difficult
than that against small ¢p,;x. Because of the non-physical
nature of the rolling parameters, no significant correlations
can be found from the evenly distributed samples in the rele-
vant 2D micro—macro parameter spaces. This means that it is
impractical to establish meta-models relevant to the rolling
parameters, which may undermine the efficiency of an opti-
mization process. The SQMC filter can resolve this difficulty
withoutinitially knowing the interactions between the param-
eters being identified, which usually comes at the price of

increased computational cost. Note that the SQMC filter or
other sequential Monte Carlo methods can be applied itera-
tively using the knowledge of the interactions obtained in the
filtering step. In such a way, the computational cost could be
significantly reduced. It can also be observed in Fig. 10a, b
that the data gathered from the DEM simulations using the
HM contact law are less scattered that those using the CL
contact law, which suggests that the HM contact law is more
robust than the CL contact law within the parameter space
currently explored.

7 Conclusions

A novel probabilistic calibration approach is proposed for
the DEM simulations of granular soils. The SQMC and SIS
algorithms are implemented within the open-source DEM
package YADE. The micromechanical parameters of the con-
tact laws are successfully calibrated against the stress—strain
behavior of Toyoura sand in drained triaxial compression
conditions at various confining pressures. Compared with
general optimization methods, the synergy of the SQMC
and SIS algorithms can estimate the evolution of poste-
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rior probability distribution over a loading history in a high
dimensional parameter space. From the distribution of the
estimated probability density functions, one can easily eval-
uate the robustness and uncertainties of DEM models and
interactions between the micromechanical parameters.

The probabilistic calibrations of six DEM models (com-
binations of two contact laws and three grain configurations)
are conducted considering confining pressures ranging from
0.2 to 2.0 MPa. Despite some fluctuations in the evolution
of the identified parameters during the calibration, stabilized
posterior probability distributions are obtained for both con-
tact laws. The distributions of E. and ¢, evolve from being
uniform to Gaussian-like, whereas the distributions of the
other parameters can hardly be approximated by mixtures of
Gaussians. The effect of grain configuration on the posterior
PDFs obtained using either the CL or HM contact law under
the same loading condition appears to be negligible. It is
proved that the macroscopic behavior of a granular material
can be recovered from a “prototype” DEM packing with a
minimal number of grains, as long as the same bulk proper-
ties, such as initial void ratios and stress states, are ensured for
the DEM packing. For a predetermined grain configuration
(e.g., Ng =1000), the posterior PDFs obtained using the HM
contact law under various loading conditions generally col-
lapse near the consistent peaks in the parameter space. These
findings indicate that although the scaling rule holds for both
contact laws (perfectly for the CL contact law), the HM con-
tact law is more robust in predicting the triaxial behavior of
a dense granular material at a wide range of confining pres-
sures. The scaling rule is of great importance, because in most
laboratory- and industrial-scale applications the number of
physical grains can easily exceed several millions. One rea-
sonable approach to DEM modeling at these scales is to apply
the scaling rule to reduce the computational effort. However,
the up-scaling has to be carried out in such a way that the
model resolution is still sufficient with negligible effects on
the predicted bulk behaviors.

The SQMC and SIS algorithms are implemented as a sep-
arate calibration toolbox independent of the DEM package. It
is straightforward to apply the proposed calibration approach
to other DEM codes. Current work involves probabilistic cal-
ibration of dense granular materials under quasistatic loading
conditions. In future research, it will be worth investigating
the applicability of the SQMC and SIS to DEM calibrations
against more complex behavior of granular materials, such as
rockfalls [11], avalanches [51] and silo discharges [8]. Ongo-
ing work on probabilistic calibration of DEM simulations is
directed towards the development of an iterative SQMC filter,
which is capable of resampling micromechanical parameters
from prior probability distributions updated by the previously
conducted probabilistic calibrations. The iterative version of
the SQMC filter would allow the probabilistic calibration to
learn from its preceding experience and explore a parameter

@ Springer

space with different resolutions. By putting more samples in
highly probable parameter subspaces, the computational cost
can be greatly reduced.
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