173 research outputs found

    Return-Map Cryptanalysis Revisited

    Get PDF
    As a powerful cryptanalysis tool, the method of return-map attacks can be used to extract secret messages masked by chaos in secure communication schemes. Recently, a simple defensive mechanism was presented to enhance the security of chaotic parameter modulation schemes against return-map attacks. Two techniques are combined in the proposed defensive mechanism: multistep parameter modulation and alternative driving of two different transmitter variables. This paper re-studies the security of this proposed defensive mechanism against return-map attacks, and points out that the security was much over-estimated in the original publication for both ciphertext-only attack and known/chosen-plaintext attacks. It is found that a deterministic relationship exists between the shape of the return map and the modulated parameter, and that such a relationship can be used to dramatically enhance return-map attacks thereby making them quite easy to break the defensive mechanism.Comment: 11 pages, 7 figure

    Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics

    Get PDF
    Chemically modified (K0.5Na0.5)NbO3 compositions with finely tuned polymorphic phase boundaries (PPBs) have shown excellent piezoelectric properties. The evolution of the domain morphology and crystal structure under applied electric fields of a model material, 0.948(K0.5Na0.5)NbO3-0.052LiSbO3, was directly visualized using in situ transmission electron microscopy. The in situ observations correlate extremely well with measurements of the electromechanical response on bulk samples. It is found that the origin of the excellent piezoelectric performance in this lead-free composition is due to a tilted monoclinic phase that emerges from the PPB when poling fields greater than 14 kV/cm are applied. 2013 AIP Publishing LLC

    HOX gene complement and expression in the planarian Schmidtea mediterranea

    Get PDF
    Abstract Background Freshwater planarians are well known for their regenerative abilities. Less well known is how planarians maintain spatial patterning in long-lived adult animals or how they re-pattern tissues during regeneration. HOX genes are good candidates to regulate planarian spatial patterning, yet the full complement or genomic clustering of planarian HOX genes has not yet been described, primarily because only a few have been detectable by in situ hybridization, and none have given morphological phenotypes when knocked down by RNAi. Results Because the planarian Schmidtea mediterranea (S. mediterranea) is unsegmented, appendage less, and morphologically simple, it has been proposed that it may have a simplified HOX gene complement. Here, we argue against this hypothesis and show that S. mediterranea has a total of 13 HOX genes, which represent homologs to all major axial categories, and can be detected by whole-mount in situ hybridization using a highly sensitive method. In addition, we show that planarian HOX genes do not cluster in the genome, yet 5/13 have retained aspects of axially restricted expression. Finally, we confirm HOX gene axial expression by RNA deep-sequencing 6 anterior–posterior “zones” of the animal, which we provide as a dataset to the community to discover other axially restricted transcripts. Conclusions Freshwater planarians have an unappreciated HOX gene complexity, with all major axial categories represented. However, we conclude based on adult expression patterns that planarians have a derived body plan and their asexual lifestyle may have allowed for large changes in HOX expression from the last common ancestor between arthropods, flatworms, and vertebrates. Using our in situ method and axial zone RNAseq data, it should be possible to further understand the pathways that pattern the anterior–posterior axis of adult planarians

    Effect of Bending Stiffness of the Electroactive Polymer Element on the Performance of a Hybrid Actuator System (HYBAS)

    Get PDF
    An electroactive polymer (EAP)-ceramic hybrid actuation system (HYBAS) was developed recently at NASA Langley Research Center. This paper focuses on the effect of the bending stiffness of the EAP component on the performance of a HYBAS, in which the actuation of the EAP element can match the theoretical prediction at various length/thickness ratios for a constant elastic modulus of the EAP component. The effects on the bending stiffness of the elastic modulus and length/thickness ratio of the EAP component were studied. A critical bending stiffness to keep the actuation of the EAP element suitable for a rigid beam theory-based modeling was found for electron irradiated P(VDF-TrFE) copolymer. For example, the agreement of experimental data and theoretical modeling for a HYBAS with the length/thickness ratio of EAP element at 375 times is demonstrated. However, the beam based theoretical modeling becomes invalid (i.e., the profile of the HYBAS movement does not follow the prediction of theoretical modeling) when the bending stiffness is lower than a critical value

    Pro- and Antiinflammatory Cytokine Signaling: Reciprocal Antagonism Regulates Interferon-gamma Production by Human Natural Killer Cells

    Get PDF
    SummaryActivated monocytes produce proinflammatory cytokines (monokines) such as interleukin (IL)-12, IL-15, and IL-18 for induction of interferon-γ (IFN-γ) by natural killer (NK) cells. NK cells provide the antiinflammatory cytokine transforming growth factor (TGF)-β, an autocrine/negative regulator of IFN-γ. The ability of one signaling pathway to prevail over the other is likely important in controlling IFN-γ for the purposes of infection and autoimmunity, but the molecular mechanism(s) of how this counterregulation occurs is unknown. Here we show that in isolated human NK cells, proinflammatory monokines antagonize antiinflammatory TGF-β signaling by downregulating the expression of the TGF-β type II receptor, and its signaling intermediates SMAD2 and SMAD3. In contrast, TGF-β utilizes SMAD2, SMAD3, and SMAD4 to suppress IFN-γ and T-BET, a positive regulator of IFN-γ. Indeed, activated NK cells from Smad3−/− mice produce more IFN-γ in vivo than NK cells from wild-type mice. Collectively, our data suggest that pro- and antiinflammatory cytokine signaling reciprocally antagonize each other in an effort to prevail in the regulation of NK cell IFN-γ production
    corecore