25 research outputs found

    Carbon Nanotubes in historical and future perspective Summary of an Extended Session at Carbon 2008 in Nagano (JP)

    Get PDF
    The extended session on Biological Evaluations with Carbon Nanotubes was held on 18 July, 2008 in Nagano as a part of the International Carbon 2008 Conference. During this session researchers and regulators discussed recent publications that have shown significant hazards of carbon nanotubes in animal models and have received wide coverage in the lay press. The discussion focused on significance and interpretation of the data, their meaning to further development, and prevention of exposure at the workplace. The paper of Poland et al was presented and detailed by Dr. Duffin, a senior researcher at the ELEGI-COLT lab at Edinburgh University (UK). Dr. Takagi and his team did not share our discussion although they were invited to do so

    A new approach to design safe CNTs with an understanding of redox potential

    Get PDF
    BACKGROUND: Carbon nanotubes (CNTs) are being increasingly industrialized and applied for various products. As of today, although several toxicological evaluations of CNTs have been conducted, designing safer CNTs is not practiced because reaction kinetics of CNTs with bioactive species is not fully understood. RESULTS: The authors propose a kinetic mechanism to establish designing safe CNTs as a new goal. According to a literature search on the behavior of CNTs and the effects of impurities, it is found that chemical reactions on CNT surface are attributed to redox reactions involving metal impurities and carbon structures at the CNT surface. CONCLUSION: A new goal is proposed to design safer CNTs using the redox potential hypothesis. The value of this hypothesis must be practically investigated and proven through the further experiments

    Differentiation of chemical reaction activity of various carbon nanotubes using redox potential: Classification by physical and chemical structures

    Get PDF
    The present study systematically examined the kinetics of a hydroxyl radical scavenging reaction of various carbon nanotubes (CNTs) including double- walled and multi-walled carbon nanotubes (DWCNTs and MWCNTs), and carbon nano peapods (AuCl3@DWCNT). The theoretical model that we recently proposed based on the redox potential of CNTs was used to analyze the experimental results. The reaction kinetics for DWCNTs and thin MWCNTs agreed well with the theoretical model and was consistent with each other. On the other hand, thin and thick MWCNTs behaved differently, which was consistent with the theory. Additionally, surface morphology of CNTs substantially influenced the reaction kinetics, while the doped particles in the center hollow parts of CNTs (AuCl3@DWCNT) shifted the redox potential in a different direction. These findings make it possible to predict the chemical and biological reactivity of CNTs based on the structural and chemical nature and their influence on the redox potential. (C) 2015 Elsevier Ltd. All rights reserved.ArticleCARBON. 95:302-308 (2015)journal articl

    Mitsui-7, heat-treated, and nitrogen-doped multi-walled carbon nanotubes elicit genotoxicity in human lung epithelial cells

    Get PDF
    Background: The unique physicochemical properties of multi-walled carbon nanotubes (MWCNT) have led to many industrial applications. Due to their low density and small size, MWCNT are easily aerosolized in the workplace making respiratory exposures likely in workers. The International Agency for Research on Cancer designated the pristine Mitsui-7 MWCNT (MWCNT-7) as a Group 2B carcinogen, but there was insufficient data to classify all other MWCNT. Previously, MWCNT exposed to high temperature (MWCNT-HT) or synthesized with nitrogen (MWCNT-ND) have been found to elicit attenuated toxicity; however, their genotoxic and carcinogenic potential are not known. Our aim was to measure the genotoxicity of MWCNT-7 compared to these two physicochemically-altered MWCNTs in human lung epithelial cells (BEAS-2B & SAEC). Results: Dose-dependent partitioning of individual nanotubes in the cell nuclei was observed for each MWCNT material and was greatest for MWCNT-7. Exposure to each MWCNT led to significantly increased mitotic aberrations with multi- and monopolar spindle morphologies and fragmented centrosomes. Quantitative analysis of the spindle pole demonstrated significantly increased centrosome fragmentation from 0.024–2.4 μg/mL of each MWCNT. Significant aneuploidy was measured in a dose-response from each MWCNT-7, HT, and ND; the highest dose of 24 μg/mL produced 67, 61, and 55%, respectively. Chromosome analysis demonstrated significantly increased centromere fragmentation and translocations from each MWCNT at each dose. Following 24 h of exposure to MWCNT-7, ND and/or HT in BEAS-2B a significant arrest in the G1/S phase in the cell cycle occurred, whereas the MWCNT-ND also induced a G2 arrest. Primary SAEC exposed for 24 h to each MWCNT elicited a significantly greater arrest in the G1 and G2 phases. However, SAEC arrested in the G1/S phase after 72 h of exposure. Lastly, a significant increase in clonal growth was observed one month after exposure to 0.024 μg/mL MWCNT-HT & ND. Conclusions: Although MWCNT-HT & ND cause a lower incidence of genotoxicity, all three MWCNTs cause the same type of mitotic and chromosomal disruptions. Chromosomal fragmentation and translocations have not been observed with other nanomaterials. Because in vitro genotoxicity is correlated with in vivo genotoxic response, these studies in primary human lung cells may predict the genotoxic potency in exposed human populations
    corecore