59 research outputs found

    CA-ARBAC: privacy preserving using context-aware role-based access control on Android permission system

    Get PDF
    Existing mobile platforms are based on manual way of granting and revoking permissions to applications. Once the user grants a given permission to an application, the application can use it without limit, unless the user manually revokes the permission. This has become the reason for many privacy problems because of the fact that a permission that is harmless at some occasion may be very dangerous at another condition. One of the promising solutions for this problem is context-aware access control at permission level that allows dynamic granting and denying of permissions based on some predefined context. However, dealing with policy configuration at permission level becomes very complex for the user as the number of policies to configure will become very large. For instance, if there are A applications, P permissions, and C contexts, the user may have to deal with A × P × C number of policy configurations. Therefore, we propose a context-aware role-based access control model that can provide dynamic permission granting and revoking while keeping the number of policies as small as possible. Although our model can be used for all mobile platforms, we use Android platform to demonstrate our system. In our model, Android applications are assigned roles where roles contain a set of permissions and contexts are associated with permissions. Permissions are activated and deactivated for the containing role based on the associated contexts. Our approach is unique in that our system associates contexts with permissions as opposed to existing similar works that associate contexts with roles. As a proof of concept, we have developed a prototype application called context-aware Android role-based access control. We have also performed various tests using our application, and the result shows that our model is working as desired

    Factors Predicting Difficult Biliary Cannulation during Endoscopic Retrograde Cholangiopancreatography for Common Bile Duct Stones

    Get PDF
    Background/Aims Difficult biliary cannulation is an important risk factor for post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP). Therefore, this study aimed to identify the factors that predict difficult cannulation for common bile duct stones (CBDS) to reduce the risk for PEP. Methods This multicenter retrospective study included 1,406 consecutive patients with native papillae who underwent ERCP for CBDS. Factors predicting difficult cannulation for CBDS were identified using univariate and multivariate analyses. Results Univariate analysis showed that six factors significantly predicted difficult cannulation: ERCP performed by non-expert endoscopists, low-volume center, absence of acute cholangitis, normal serum bilirubin, intradiverticular papilla, and type of major duodenal papilla. Multivariate analysis identified ERCP performed by non-expert endoscopists (odds ratio [OR], 2.5; p<0.001), low-volume center (OR, 1.6; p<0.001), intradiverticular papilla (OR, 1.3; p=0.007), normal serum bilirubin (OR, 1.3; p=0.038), and absence of acute cholangitis (OR, 1.3; p=0.049) as factors significantly predicting difficult cannulation for CBDS. Conclusions Initial cannulation by an experienced endoscopist, early rescue cannulation, or early takeover by an experienced endoscopist should be considered when performing ERCP for CBDS in the presence of factors predicting difficult cannulation

    Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes

    Get PDF
    BackgroundReplication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting.MethodsWe constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5′ regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype.ResultsWe found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype.ConclusionsSensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression

    Utility of a simplified ultrasonography scoring system among patients with rheumatoid arthritis: A multicenter cohort study

    Get PDF
    ABSTRACT: We aimed to evaluate the utility of a simplified ultrasonography (US) scoring system, which is desired in daily clinical practice, among patients with rheumatoid arthritis (RA) receiving biological/targeted synthetic disease-modifying antirheumatic drugs (DMARDs).A total of 289 Japanese patients with RA who were started on tumor necrosis factor inhibitors, abatacept, tocilizumab, or Janus kinase inhibitors between June 2013 and April 2019 at one of the 15 participating rheumatology centers were reviewed. We performed US assessment of articular synovia over 22 joints among bilateral wrist and finger joints, and the 22-joint (22j)-GS and 22-joint (22j)-PD scores were evaluated as an indicator of US activity using the sum of the GS and PD scores, respectively.The top 6 most affected joints included the bilateral wrist and second/third metacarpophalangeal joints. Therefore, 6-joint (6j)-GS and -PD scores were defined as the sum of the GS and PD scores from the 6 synovial sites over the aforementioned 6 joints, respectively. Although the 22j- or 6j-US scores were significantly correlated with DAS28-ESR or -CRP scores, the correlations were weak. Conversely, 6j-US scores were significantly and strongly correlated with 22j-US scores not only at baseline but also after therapy initiation.Using a multicenter cohort data, our results indicated that a simplified US scoring system could be adequately tolerated during any disease course among patients with RA receiving biological/targeted synthetic DMARDs

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Production and Reutilization of Fluorescent Dissolved Organic Matter by a Marine Bacterial Strain, Alteromonas macleodii

    Get PDF
    The recalcitrant fraction of marine dissolved organic matter (DOM) plays an important role in carbon storage on the earth's surface. Bacterial production of recalcitrant DOM (RDOM) has been proposed as a carbon sequestration process. It is still unclear whether bacterial physiology can affect RDOM production. In this study, we conducted a batch culture using the marine bacterial isolate Alteromonas macleodii, a ubiquitous gammaproteobacterium, to evaluate the linkage between bacterial growth and DOM production. Glucose (1 mmol C L-1) was used as the sole carbon source, and the bacterial number, the DOM concentration in terms of carbon, and the excitationemission matrices (EEMs) of DOM were monitored during the 168-h incubation. The incubation period was partitioned into the exponential growth (0-24 h) and stationary phases (24-168 h) based on the growth curve. Although the DOM concentration decreased during the exponential growth phase due to glucose consumption, it remained stable during the stationary phase, corresponding to approximately 4% of the initial glucose in terms of carbon. Distinct fluorophores were not evident in the EEMs at the beginning of the incubation, but DOM produced by the strain exhibited five fluorescent peaks during exponential growth. Two fluorescent peaks were similar to protein-like fluorophores, while the others could be categorized as humiclike fluorophores. All fluorophores increased during the exponential growth phase. The tryptophan-like fluorophore decreased during the stationary phase, suggesting that the strain reused the large exopolymer. The tyrosine-like fluorophore seemed to be stable during the stationary phase, implying that the production of tyrosine containing small peptides through the degradation of exopolymers was correlated with the reutilization of the tyrosine-like fluorophore. Two humic-like fluorophores that showed emission maxima at the longer wavelength (525 nm) increased during the stationary phase, while the other humic-like fluorophore, which had a shorter emission wavelength (400 nm) and was categorized as recalcitrant, was stable. These humic-like fluorophore behaviors during incubation indicated that the composition of bacterial humic-like fluorophores, which were unavailable to the strain, differed between growth phases. Our results suggest that bacterial physiology can affect RDOM production and accumulation in the ocean interior
    corecore