331 research outputs found

    An Architecture for IoT-Enabled Smart Transportation Security System: A Geospatial Approach

    Get PDF
    Internet of Things (IoT) in urban transportation systems have been ubiquitously embedded into a variety of devices and transport entities. The IoT-enabled smart transportation system (STS) has thus gained growing tractions amongst scholars and practitioners. However, several IoT challenges in relation to cyber–physical security are exposed due to the heterogeneity, complexity and decentralisation of the IoT network. There also exist geospatial security concerns with respect to the embeddings of 5G networks into public infrastructures that are interconnected with the transport system via IoT. To address these concerns, this article aims to apply geospatial modelling approach to propose a smart transportation security systems (STSSs). It is modelled and simulated by undertaking an experimental study in the city of Beijing, China. The simulation outcome of the proposed architecture is expected to offer a strategic guide for strategic security management of urban smart transportation

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb−1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb−1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K−\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1 MeV,m(Ξc(2939)0)=2938.5±0.9±2.3 MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5 MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5 MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K−\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8 σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5 MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8 MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0→Λc+K−\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7 σ3.7\,\sigma. The relative branching fraction of B−→Λc+Λˉc−K−B^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the B−→D+D−K−B^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D∗)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D∗)≡B(Bˉ→D∗τ−Μˉτ)/B(Bˉ→D∗Ό−ΜˉΌ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)≡B(B−→D0τ−Μˉτ)/B(B−→D0Ό−ΜˉΌ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb−1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τ−→Ό−ΜτΜˉΌ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D∗)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=−0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    A Satellite Data Based Detailed Study of the Aerosol Emitted from Open Biomass Burning in Northeast China

    No full text
    Due to its unique natural conditions and agricultural tradition, northeast China (NEC) has formed a distinctive open biomass burning habit with local-specific biomass burning aerosol features. In this research, with the help of a newly optimized biomass burning aerosol identification method, which combines satellite aerosol and fire observational products with the HYSPLIT model forward trajectories, a systematic and quantitative analysis of aerosol emitted from open biomass burning in the NEC region are conducted to determine in detail its local-specific features, such as influence region, aging characteristics, and seasonal variation. During the 72-h aging process after biomass burning emission, aerosol particle size growth found with the Angstrom exponent declines from 1.6 to 1.54. Additionally, the volume fraction of black carbon decreases from 4.5% to 3.1%, leading to the Single Scattering Albedo (SSA) increasing from the fresh state of 0.84 to the aged state of 0.89. The cooling effect at TOA, due to the existence of aerosol, is enhanced by more than 70%, indicating its severe and dynamic influence on climate change. The average AOD in spring is 0.63, which is higher than autumn&rsquo;s value of 0.52, indicating that biomass burning is more intensive in spring. Compared to autumn, aerosols emitted from spring biomass burning in the NEC region have lower sphere fraction, smaller particle size, higher volume fraction of black carbon, higher absorbability, and weaker cooling effect at TOA, which can be partly explained by the drier ambient environment and lower water content of the burned crop straw in spring

    A Satellite Data Based Detailed Study of the Aerosol Emitted from Open Biomass Burning in Northeast China

    No full text
    Due to its unique natural conditions and agricultural tradition, northeast China (NEC) has formed a distinctive open biomass burning habit with local-specific biomass burning aerosol features. In this research, with the help of a newly optimized biomass burning aerosol identification method, which combines satellite aerosol and fire observational products with the HYSPLIT model forward trajectories, a systematic and quantitative analysis of aerosol emitted from open biomass burning in the NEC region are conducted to determine in detail its local-specific features, such as influence region, aging characteristics, and seasonal variation. During the 72-h aging process after biomass burning emission, aerosol particle size growth found with the Angstrom exponent declines from 1.6 to 1.54. Additionally, the volume fraction of black carbon decreases from 4.5% to 3.1%, leading to the Single Scattering Albedo (SSA) increasing from the fresh state of 0.84 to the aged state of 0.89. The cooling effect at TOA, due to the existence of aerosol, is enhanced by more than 70%, indicating its severe and dynamic influence on climate change. The average AOD in spring is 0.63, which is higher than autumn’s value of 0.52, indicating that biomass burning is more intensive in spring. Compared to autumn, aerosols emitted from spring biomass burning in the NEC region have lower sphere fraction, smaller particle size, higher volume fraction of black carbon, higher absorbability, and weaker cooling effect at TOA, which can be partly explained by the drier ambient environment and lower water content of the burned crop straw in spring

    Studying the Regional Transmission and Inferring the Local/External Contribution of Fine Particulate Matter Based on Multi-Source Observation: A Case Study in the East of North China Plain

    No full text
    The regional transmission characteristics as well as the local emission and external transmission contribution of fine particulate matter in the eastern North China Plain were investigated using multisource data. Himawari-8 aerosol optical depth can represent the whole layer of air pollution situation; hourly aerosol optical depth were used to reconstruct the route of fine particulate matter horizontal transmission, and the transmission speed was calculated and compared with the near-surface wind speed. A case study conducted on 22 September 2019 showed the pollutant was mainly transmitted from Tangshan to Dezhou, and the transmission speed was greater than the near-surface wind speed. We also found that pollution air mass had 2&ndash;3 h of diffusion delay in the near-surface pollutant monitoring results. In addition, the vertical diffusion of pollution mainly occurred at low altitude below 1.8 km. The contribution of local emission and external transmission was inferred in this study with the help of the WRF-Chem model, the pollution in the northeastern portion of the study area mainly derived from local emissions, while the southwestern portion of the study area was mainly affected by external transport. Among them, the local emission accounted for 79.15% of the pollution in Tangshan, while the external transmission contributed 60.28% of the fine particulate matter concentration in Dezhou

    The Impact of Central Heating on the Urban Thermal Environment Based on Multi-Temporal Remote Sensing Images

    No full text
    Research on the impact of anthropogenic heat discharge in a thermal environment is significant in climate change research. Central heating is more common in the winter in Northeast China as an anthropogenic heat. This study investigates the impact of central heating on the thermal environment in Shenyang, Changchun, and Harbin based on multi-temporal land surface temperature retrieval from remote sensing. An equivalent heat island index method was proposed to overcome the problem of the method based on a single-phase image, which cannot evaluate all the central heating season changes. The method improves the comprehensiveness of a thermal environment evaluation by considering the long-term heat accumulation. The results indicated a significant increase in equivalent heat island areas at night with 22.1%, 17.3%, and 19.5% over Shenyang, Changchun, and Harbin. The increase was significantly positively correlated with the central heating supply (with an R-value of 0.89 for Shenyang, 0.93 for Changchun, and 0.86 for Harbin; p < 0.05). The impact of central heating has a more significant effect than the air temperature. The results provide a reference for future studies of urban thermal environment changes

    Estimating Daily Actual Evapotranspiration at a Landsat-Like Scale Utilizing Simulated and Remote Sensing Surface Temperature

    No full text
    Actual evapotranspiration (ET) with high spatiotemporal resolution is very important for the research on agricultural water resource management and the water cycle processes, and it is helpful to realize precision agriculture and smart agriculture, and provides critical references for agricultural layout planning. Due to the impact of the clouds, weather environment, and the orbital period of optical satellite, there are difficulties in providing daily remote sensing data that are not contaminated by clouds for estimating daily ET with high spatial-temporal resolution. By improving the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), this manuscript proposes the method to fuse high temporal and low spatial resolution Weather Research and Forecasting (WRF) model surface skin temperature (TSK) with the low temporal and high spatial resolution remote sensing surface temperature for obtaining high spatiotemporal resolution daily surface temperature to be used in the estimation of the high spatial resolution daily ET (ET_WRFHR). The distinction of this study from the previous literatures can be summarized as the novel application of the fusion of WRF-simulated TSK and remote sensing surface temperature, giving full play to the availability of model surface skin temperature data at any time and region, making up for the shortcomings of the remote sensing data, and combining the high spatial resolution of remote sensing data to obtain ET with high spatial (Landsat-like scale) and temporal (daily) resolution. The ET_WRFHR were cross-validated and quantitatively verified with MODIS ET products (MOD16) and observations (ET_Obs) from eddy covariance system. Results showed that ET_WRFHR not only better reflects the difference and dynamic evolution process of ET for different land types but also better identifies the details of various fine geographical objects. It also represented a high correlation with the ET_Obs by the R2 amount reaching 0.9186. Besides, the RMSE and BIAS between ET_WRFHR and the ET_Obs are obtained as 0.77 mm/d and −0.08 mm/d respectively. High R2, as well as the small RMSE and BIAS amounts, indicate that ET_WRFHR has achieved a very good performance
    • 

    corecore