3,186 research outputs found
The Euler Number of Bloch States Manifold and the Quantum Phases in Gapped Fermionic Systems
We propose a topological Euler number to characterize nontrivial topological
phases of gapped fermionic systems, which originates from the Gauss-Bonnet
theorem on the Riemannian structure of Bloch states established by the real
part of the quantum geometric tensor in momentum space. Meanwhile, the
imaginary part of the geometric tensor corresponds to the Berry curvature which
leads to the Chern number characterization. We discuss the topological numbers
induced by the geometric tensor analytically in a general two-band model. As an
example, we show that the zero-temperature phase diagram of a transverse field
XY spin chain can be distinguished by the Euler characteristic number of the
Bloch states manifold in a (1+1)-dimensional Bloch momentum space
Isostructural Phase Transition of TiN Under High Pressure
In situ high-pressure energy dispersive x-ray diffraction experiments on
polycrystalline powder TiN with NaCl-type structure have been conducted with
the pressure up to 30.1 GPa by using the diamond anvil cell instrument with
synchrotron radiation at room tempearture. The experimental results suggested
that an isostructural phase transition might exist at about 7 GPa as revealed
by the discontinuity of V/V0 with pressure.Comment: submitte
Black Holes and Photons with Entropic Force
We study entropic force effects on black holes and photons. We find that
application of an entropic analysis restricts the radial change of a
black hole of radius , due to a test particle of a
Schwartzchild radius moving towards the black hole by near
black body surface, to be given by a relation , or {\Delta R}/{\lambdabar_M} = {\Delta x}/{2 \lambdabar_m}. We
suggest a new rule regarding entropy changes in different dimensions, \Delta
S= 2\pi k D \Delta l /\lambdabar, which unifies Verlinde's conjecture and the
black hole entropy formula. We also propose to extend the entropic force idea
to massless particles such as a photon. We find that there is an entropic force
on a photon of energy , with , and therefore
the photon has an effective gravitational mass .Comment: 4 Latex pages, no figure
Effect of process parameters on the force parameters in warm skew rolling of copper ball
In order to better control the forming quality of copper ball by warm skew rolling process, a Finite Element Model (FEM) of copper ball warm skew rolling for the coupling of thermal and mechanical was established. The influence of process parameters on force and rolling torque was analyzed by using single factor research method. The results show that the smaller the cross angle, the lower the rolling temperature, the slower the rolling rotation speed, the greater the forming force and rolling torque, the more difficult for forming. The optimum rolling temperature is 600 °C; the optimum cross angle is 2,5°; the optimum rolling rotation speed is 60 rpm
Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization
Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading
Distinguishing Emission-Associated Ambient Air PM2.5 Concentrations and Meteorological Factor-Induced Fluctuations
Although PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) in the air originates from emissions, its concentrations are often affected by confounding meteorological effects. Therefore, direct comparisons of PM2.5 concentrations made across two periods, which are commonly used by environmental protection administrations to measure the effectiveness of mitigation efforts, can be misleading. Here, we developed a two-step method to distinguish the significance of emissions and meteorological factors and assess the effectiveness of emission mitigation efforts. We modeled ambient PM2.5 concentrations from 1980 to 2014 based on three conditional scenarios: realistic conditions, fixed emissions, and fixed meteorology. The differences found between the model outputs were analyzed to quantify the relative contributions of emissions and meteorological factors. Emission-related gridded PM2.5 concentrations excluding the meteorological effects were predicted using multivariate regression models, whereas meteorological confounding effects on PM2.5 fluctuations were characterized by probabilistic functions. When the regression models and probabilistic functions were combined, fluctuations in the PM2.5 concentrations induced by emissions and meteorological factors were quantified for all model grid cells and regions. The method was then applied to assess the historical and future trends of PM2.5 concentrations and potential fluctuations on global, national, and city scales. The proposed method may thus be used to assess the effectiveness of mitigation actions
Bifidobacterium bifidum BB28 microencapsulated with ca-alginate: Survival under simulated gastrointestinal conditions and stability during storage
The present study was to evaluate the survival rate of free and encapsulated Bifidobacterium bifidum BB28 under simulated gastrointestinal conditions and its stability during storage. Results showed that non-microencapsulated Bifidobacterium bifidum BB28 was more susceptible to simulated gastrointestinal conditions than microencapsulated bacteria. Microencapsulated Bifidobacterium BB28 exhibited a lower population reduction than free cells during exposure to simulated gastrointestinal conditions, the viable count of monolayer microcapsules, double layer microcapsules, and triple layer microcapsules decreased by nine magnitudes, four magnitudes, and one magnitude after 2 h, respectively. The enteric test showed that the microorganism cells were released from the monolayer, double layer, and triple layer microcapsules completely in 40 min. Moreover, the optimum storage times of free Bifidobacterium BB28, monolayer microcapsules, double layer microcapsules, and triple layer microcapsules were 21 days, 21 days, 28 days, and more than 35 days in orange juice, pure milk, and nutrition Express (a commercially available milk based drink), and the viable counts were maintained at 1×106 CFU g−1 or more, which means that the double layer and triple layer of microcapsules of B. bifidum BB28 have great potential in food application
Towards Accurate Estimation of the Proportion of True Null Hypotheses in Multiple Testing
BACKGROUND: Biomedical researchers are now often faced with situations where it is necessary to test a large number of hypotheses simultaneously, eg, in comparative gene expression studies using high-throughput microarray technology. To properly control false positive errors the FDR (false discovery rate) approach has become widely used in multiple testing. The accurate estimation of FDR requires the proportion of true null hypotheses being accurately estimated. To date many methods for estimating this quantity have been proposed. Typically when a new method is introduced, some simulations are carried out to show the improved accuracy of the new method. However, the simulations are often very limited to covering only a few points in the parameter space. RESULTS: Here I have carried out extensive in silico experiments to compare some commonly used methods for estimating the proportion of true null hypotheses. The coverage of these simulations is unprecedented thorough over the parameter space compared to typical simulation studies in the literature. Thus this work enables us to draw conclusions globally as to the performance of these different methods. It was found that a very simple method gives the most accurate estimation in a dominantly large area of the parameter space. Given its simplicity and its overall superior accuracy I recommend its use as the first choice for estimating the proportion of true null hypotheses in multiple testing
- …