61 research outputs found

    Porous In2O3 powders prepared by ultrasonic-spray pyrolysis as a NO2-sensing material: Utilization of polymethylmethacrylate microspheres synthesized by ultrasonic-assisted emulsion polymerization as a template

    Get PDF
    NO2-sensing properties of porous In2O3 (pr-In2O3) powders prepared by ultrasonic-spray pyrolysis employing polymethylmethacrylate (PMMA) microspheres as a template has been investigated in this study. The PMMA microspheres were synthesized in water by ultrasonic-assisted emulsion polymerization employing methyl methacrylate monomer, sodium lauryl sulfate as a surfactant and ammonium persulfate as an initiator. The PMMA microspheres synthesized was quite uniform and the particle size was ca. 60.2 nm (measured by dynamic light scattering). The microstructure of pr-In2O3 powders prepared was largely dependent on the kind of In2O3 sources. The pr-In2O3 which was prepared from In(NO3)3 as an In 2O3 source (pr-In2O3(N)) consisted of submicron-sized spherical particles with welldeveloped spherical mesopores (several tens of nanometers in pore diameter) and each oxide wall among pores was constructed with meso-sized In2O3 particles connected continuously. On the other hand, the pr-In2O3 which was prepared from InCl3 as an In2O3 source (pr-In2 O3(Cl)) was composed of a large number of dispersed meso-sized particles and a few submicron-sized dense spherical particles. In contrast, the morphology of conventional In2O3 powder (c-In 2O3) prepared by ultrasonic-spray pyrolysis of PMMAfree In(NO3)3 aqueous solution as a reference was relatively dense and roughly spherical with a diameter of ca. 100-700 nm. The responses to 1.0 and 10ppm NO2 of pr-In2O3 sensors in air were much larger than those of a c-In2O3(N) sensor in the temperature range of less than 250°C and 300°C, respectively. In addition, the response and recovery speeds of both the pr-In2O 3 sensors were much faster than those of the c-In2O 3(N) sensor, because of the well-developed porous structure of the pr-In2O3 sensors

    Effects of integrated hospital treatment on the default mode, salience, and frontal-parietal networks in anorexia nervosa: A longitudinal resting-state functional magnetic resonance imaging study.

    No full text
    The psychopathology of patients with anorexia nervosa has been hypothesized to involve inappropriate self-referential processing, disturbed interoceptive awareness, and excessive cognitive control, including distorted self-concern, disregard of their own starvation state, and extreme weight-control behavior. We hypothesized that the resting-state brain networks, including the default mode, salience and frontal-parietal networks, might be altered in such patients, and that treatment might normalize neural functional connectivity, with improvement of inappropriate self-cognition. We measured resting-state functional magnetic resonance images from 18 patients with anorexia nervosa and 18 healthy subjects before and after integrated hospital treatment (nourishment and psychological therapy). The default mode, salience, and frontal-parietal networks were examined using independent component analysis. Body mass index and psychometric measurements significantly improved after treatment. Before treatment, default mode network functional connectivity in the retrosplenial cortex and salience network functional connectivity in the ventral anterior insula and rostral anterior cingulate cortex were decreased in anorexia nervosa patients compared with those in controls. Interpersonal distrust was negatively correlated with salience network functional connectivity in the rostral anterior cingulate cortex. Default mode network functional connectivity in the posterior insula and frontal-parietal network functional connectivity in the angular gyrus were increased in anorexia nervosa patients compared with those in controls. Comparison between pre- and post-treatment images from patients with anorexia nervosa exhibited significant increases in default mode network functional connectivity in the hippocampus and retrosplenial cortex, and salience network functional connectivity in the dorsal anterior insula following treatment. Frontal-parietal network functional connectivity in the angular cortex showed no significant changes. The findings revealed that treatment altered the functional connectivity in several parts of default mode and salience networks in patients with anorexia nervosa. These alterations of neural function might be associated with improvement of self-referential processing and coping with sensations of discomfort following treatment for anorexia nervosa

    Gut Dysbiosis in Patients with Anorexia Nervosa.

    No full text
    Anorexia nervosa (AN) is a psychological illness with devastating physical consequences; however, its pathophysiological mechanism remains unclear. Because numerous reports have indicated the importance of gut microbiota in the regulation of weight gain, it is reasonable to speculate that AN patients might have a microbial imbalance, i.e. dysbiosis, in their gut. In this study, we compared the fecal microbiota of female patients with AN (n = 25), including restrictive (ANR, n = 14) and binge-eating (ANBP, n = 11) subtypes, with those of age-matched healthy female controls (n = 21) using the Yakult Intestinal Flora-SCAN based on 16S or 23S rRNA-targeted RT-quantitative PCR technology. AN patients had significantly lower amounts of total bacteria and obligate anaerobes including those from the Clostridium coccoides group, Clostridium leptum subgroup, and Bacteroides fragilis group than the age-matched healthy women. Lower numbers of Streptococcus were also found in the AN group than in the control group. In the analysis based on AN subtypes, the counts of the Bacteroides fragilis group in the ANR and ANBP groups and the counts of the Clostridium coccoides group in the ANR group were significantly lower than those in the control group. The detection rate of the Lactobacillus plantarum subgroup was significantly lower in the AN group than in the control group. The AN group had significantly lower acetic and propionic acid concentrations in the feces than the control group. Moreover, the subtype analysis showed that the fecal concentrations of acetic acid were lower in the ANR group than in the control group. Principal component analysis confirmed a clear difference in the bacterial components between the AN patients and healthy women. Collectively, these results clearly indicate the existence of dysbiosis in the gut of AN patients

    miR-195, miR-455-3p and miR-10a( *) are implicated in acquired temozolomide resistance in glioblastoma multiforme cells.

    Get PDF
    To identify microRNAs (miRNAs) specifically involved in the acquisition of temozolomide (TMZ) resistance in glioblastoma multiforme (GBM), we first established a resistant variant, U251R cells from TMZ-sensitive GBM cell line, U251MG. We then performed a comprehensive analysis of miRNA expressions in U251R and parental cells using miRNA microarrays. miR-195, miR-455-3p and miR-10a( *) were the three most up-regulated miRNAs in the resistant cells. To investigate the functional role of these miRNAs in TMZ resistance, U251R cells were transfected with miRNA inhibitors consisting of DNA/LNA hybrid oligonucleotides. Suppression of miR-455-3p or miR-10a( *) had no effect on cell growth, but showed modest cell killing effect in the presence of TMZ. On the other hand, knockdown of miR-195 alone displayed moderate cell killing effect, and combination with TMZ strongly enhanced the effect. In addition, using in silico analysis combined with cDNA microarray experiment, we present possible mRNA targets of these miRNAs. In conclusion, our findings suggest that those miRNAs may play a role in acquired TMZ resistance and could be a novel target for recurrent GBM treatment
    • …
    corecore